Concentration

for functions of bounded

Interaction

Andreas Maurer



Which properties of a bounded function
f: X" - R

guarantee nice behaviour of the random variable f (X),
with X = (X1, ..., X5) a vector of independent random variables?



Nice behaviour of sums

f(x) =) gi(z;) with g;: X —[a,b].
1=1
Additive variance o’ (f) = zn: o (g;)
1=1

f-Ef
o (f)

—2t2
Hoeffding inequality Pr{f—Ef>t} < exp ( )
n (

normal approximation

~ N (0,1) for large n

Bernstein inequality  Pr{f—FEf >t} < exp (202 _ a)t/3>



What about functions which are not sums?




The bounded difference inequality

Partial difference operator

Dl;’y,f (x):=f(. 2p_1.Y Tpa1,--.) — f (...,xk_l,y/,xk+1, ) .

Define maximal variation in any argument

- k
M (f):= m]?xxs’;z/ Dy o f (x).

Theorem (Hoeffding, Azuma, McDiarmid):

T
nM (f)?

Extends Hoeffding's inequality to general functions.

Pr{f—Ef>t}§exp< ),forallf:)c‘”—>]R



What about functions which are close to being sums?

!

% =distance to
additivity




Interaction functional

For bounded f : X™ — IR define

- [ k
T g, e Phe P! )

e J is a seminorm which vanishes for sums

e Key property for "sum-like" behaviour:
J (f) is at most of the same order in n as M (f)
or, put differently:
maximal mixed second difference < O (1/n) X maximal first difference



Weak interactions

Definition:
f: X" — R has (a, b)-weak interactions,
if M (f) <a/nand J(f) <b/n.

A sequence (fn), o of functions fy : X — R has (a, b)-weak interactions
if every fn, has (a, b)-weak interactions.



Outline

Examples of weak interactions:

o U- and V-statistics

o Lipschitz L-statistics

o Generalization error of the Gibbs algorithm

o Generalization error of ¢y-regularized classification

Properties of weak interactions:

o Small bias in the Efron-Stein inequality
o Bernstein's inequality

o Variance estimation

o Normal approximation

Proof of Bernstein's inequality



V- and U-statistics

Fix 1 < m <n,
forj = (41, ..., jm) € {1, ....,n}"" let

Rj:Xm%R,‘/{j‘Sl

and define V, U : X™ — IR,
Vix) = n—’m. > K (ajjl, ...,a:jm>

U = () > ()

1<1<...<gm<m

V' = Von Mises statistic (1947)
U = Unbiased statistic (Hoeffding, 1948)



V- and U-statistics have weak interactions

Vix) = n_m. > ; (a:jl,...,a:jm)

je{1,...n}"™"
" 2 , 2 ™. o
DyyV(x) < —CHj:kejil= "1 U1 j o7 = min s
’r‘:
B Zmnm_1_2m
- nm - n

kil 4 . : 4
DLDSV () < —Hjtkleil =—

U {i:r: mini/\S:mini}

r,S:TF£S Ji=k Ji=l

4m (m —1)n™=2  4m(m —1)

nm n2

So V has (2m, 4m (m — 1))-weak interactions!
Similar argument and result for U (A.M,17a)



Lipschitz L-statistics
X = |a, b] and (az(l), :r;(n)) — order statistic of x € X"

Z (i/n)x

where F': [0, 1] — R has Lipschitz constant L.

1
n

Examples: mean, smoothly trimmed mean, smoothed quantiles, etc

Then f as (L (b—a), L (b— a))-weak interactions
(bound on M (f) easy, bound on J (f) cumbersome - many cases)



A chain rule

Extend definition of M and J to Banach space-valued functions f : X — B
_ k _ [ k
M (f) = max sup Dy (@) and J () =m max sup [ DDyt (@)

Lemma: B be a Banach space, U C B convex, f : X" - U, F: U — R
be twice Fréchet-differentiable. Then

M(Fof) < sup|F'(v)|M(f) and
velU

J(Fof) < nsup |F"(v)| M(£)*+sup |F' (v)|| ] (£).
velU velU

If f has weak interactions and ||F" (v)|| and ||F’ (v)]| are bounded on U,
then F' o f also has weak interactions.



Free energy and Gibbs distributions

() a mble space with finite, positive measure p.
H:Qx X" — [—1,1] a "Hamiltonian",
B > 0 an "inverse temperature".

For x € X" define Ag (x) =InZg (x) := In/Q e PHWX) g, (w)

The chain rule with
f : xeX"— H(.,x) € Loo (Q) and

F : G(.) €L (Q2)— In/Q e PG dp (w)

gives M (Ag) < BM (H) and J (Ag) < 8J (H) +2nB°M (H)?

Also define Gibbs distribution on ()
drp (x) = Zi* (z) e PH X dp (w)



"Generalization" of the Gibbs algorithm

loss of model w on datum = : £(w,x) where £: QA x X — [0, 1]

1 n
empirical loss on sample x : H (w,x) == > £ (w, z;)
=1
true lossonrv. X : H (w)=Ex[¢(w, X)].
Gibbs measure for empirical loss : dmpg (x)
Gibbs measure for true loss : dmg
a measure of "generalization" : KL (drg (x),drng) =: f (x)

By the chain rule

2
w () < P2 g () < 220420

So f has (66 (1+283), 2432 (1+ 26))—weak interactions!




Generalization of ¢,-regularized algorithms

(H,{.,.),]||-]|) a real Hilbert space with unit ball X

define g : X — H by

returned weight vector g (x) =
empirical loss L (x) =

true expected loss L (x) =
generalization error A (x) =

Then A has (O ()\_3/2) 14" O ()\_3) \]E”’}\m)—weak interactions!

(A.M.17b, by implicit differentiation)



Properties of functions with weak interactions

o Small bias in the Efron-Stein inequality
o Bernstein's inequality
o Variance estimation

o Normal approximation



The bias of the Efron-Stein inequality

" . 1 2
k-th conditional variance : o% (f) (x) = §E(y,y’)Nuk><Mk; [(le;,y’f (x))

sum of conditional variances : X2 (f) (x) = i o2 (f) (x)

=1
Efron-Stein inequality : o2 (f) < E [22 (f)]

Theorem (Houdré, 1998):

B[22 ()] <o®(f)+-

Ik 2
Z Ex,z,z’,y,y’ [(Dzz’Dyy’f (x))
kLAl

If f has weak interactions then o2 (f) = E [22 (f)] + O (1/77,2).



Bernstein's inequality

Theorem (A.M.17a): For bounded mble f : X — R

32
Prif - B>t < e (ZE Z2(f)] + @M (f) /347 () t)

extends Bernstein's inequality from sums to general functions.

Corollary: If f has (a, b)-weak interactions then

(using B |22 (f)] < 02 (f) + 7 (£) /4)
Vo € (0,1/e) with probability at least 1 — §

(2a/3+2b)In (1/6)

n

f<E[f]+1/202(f)In(1/8) +



Estimating variance

Theorem: For any bounded f : X" — R
there exists g : X™t1 — R such that

for any iid sequence X7, ..., Xp, ... with values in X
and for 0 < § < 1/e with probablllty at least 1 —

0 Ko o875 & T < 3+ x0T

with K1 (f) = J(f) 72+ M (£)2+8J (f)?
and Ky (f) = \Jmax {M (£)2 48 ()%, M (f) (M (f) +27 ()}

Also: g is an unbiased estimator for the Efron Stein bound E [22 (f)]



The variance estimator

For any n and x € X" define

replacement operator Slgx = (z1, ...

deletion operator SFx = (z1,..

The variance estimator g : X711 — R is

n+1

g(x) = n+122((

i=1 jij7#i

 Th_1, Yy Tht1s - Tn) € X"
y Lle—11 Th4-1, ,Cljn> - Xn_l.

0 s (stsi)"

Needs O (n2> computations of f, but only a sample of O (n)!

So for weak interactions with high probability

Vo2 (1) = Js(x)+0(+).



Normal approximation
6§ (W,V)={sup|E |[h(W)|— E[h(V)]|:h a Lipschitz-1 function}

Theorem : Let E[f] =0and Z ~ N (0,1). Then

o VBAM (f) (J (f) + M(f)) , nM(f)°
JR— 2 3 .
o (f) 20° ()

6 (f(X),Z)

If (fn) has (a, b)-weak interactions and o (fn) > Cn™P for constant C, then

V8Ca (a+0b)+ a3
d(fn(X),Z) < 3.,2=3p .

(1/2 < p < 2/3) = asymptotic normality.
(p=1/2) = rateis n"1/2




Intermission



A Bernstein-type inequality

Theorem: Let f: X" — R and for some b and all m > 2

n 2
PEATSCYSE EA D 2

Then fort > 0

42
Prif =Bl >t < e <2E [22 (f)] + (2b + J(f))t) |

The proof uses the entropy method (Boltzmann, Gibbs, Shannon, Nelson, Lieb,
Ledoux, Bobkov, Massart, Boucheron, Lugosi, and many others)
We prove this for b = 1. The theorem then follows from rescaling



Definitions

thermal measure pgp 1= eﬁfd,u/E [eﬁf]
— E [geﬁf} /E [eﬁf}

| S

thermal expectation  Eg¢[g

_ 2
thermal variance a%f 9] = Eﬁf [(9 — Eﬁf [9]) ]
entropy Ent(8f) : =KL (dﬁ‘ﬁf' d“) = BEgf|f]—InE [eﬂf]
conditional expectation Ej[g] : = E 9| X1, ..., Xp_1, Xp11s - X0

the conditional quantities Ej, g7 [.], Ji,ﬁf .], Entg, (Bf) are all w.r.t. B[]

replacement operator Sly“a:' = (1, 1, Y Tht1, - Tn) € X"
(S{jf) (z) = f (Sly“a:') for f: X" — Y



Facts used in the proof

: : _ B(f—Ef)] _
Markov inequality Pr{f—Ef >t} < ﬁlr;foexp (InE[ )] Bt)

s
representation of mgf InE [eﬁ(f_Ef)} = B/ Ent (;/f)dfy

subadditivity of entropy Ent (8f) < Egy ZEntk 5f)]
fluctuation representation Ent (Bf) = / / flds dt
Ent (8f) < Egy Z/o /t o%.sf [f]ds dt]
k=1

IA

Fenchel-Young inequality Eg¢lg] Ent (Bf) + In E [e7]



The sum of conditional variances, |

Lemma: Let 8 € (0,1) and suppose that for all m > 2

2% (f)
2
52

2(1-p)

m!.

S° B [(f — Buf)™] <
k=1

Then Ent (Bf) <

sFEgf [22 (f)} -

Proof: For s € (0, 8)

U%,sf (f) < Eisy [(f — E, (f))z} (variational property of variance)
Ey, |(f = By (£))% esU=Erf)]
Ek [es(f_Ek:f)]




The sum of conditional variances, |l

Lemma: Let 8 € (0,1) and suppose that for all m > 2

2% (f)
2
52

2(1-p)

m!.

S° B [(f — Buf)™] <
k=1

Then Ent (Bf) <

sFEgf [22 (f)} -

Proof: For s € (0, 8)

Ey, [(f — By (£))° es(f_E’“f)]
Ek [es(f_Ekf)}
< Ej [(f — B (f))? es(f_E’ff)] (Jensen's inequality)

a%,sf (f) <



The sum of conditional variances, 1l

Lemma: Let 8 € (0,1) and suppose that for all m > 2
2
() .

S B [(f — Bof)™] <
k=1

Then Ent (Bf) <

Proof: For s € (0, 8)

Z O-%,sf (f)
k=1

VA
=
Sy
-
|
=
=
N
Q
-
T
&
&
=



The sum of conditional variances, |V

Lemma: Let 5 € (0,1) and suppose that for all m > 2
2
=) .

S B [(f - Bof)™] <
k=1

Th Ent <
e Em(3f) < T

Proof: For s € (0, 8)

R < > ZEk[f By )" 2]

mO

Sy
10

0. @)

< (m+1) (m+2) s (by hypothesis)




The sum of conditional variances, V

Lemma: Let 8 € (0,1) and suppose that for all m > 2
2
()

S B [(f - Bof)™] <
k=1

Then Ent (Bf) <

Proof:

W

Ent (Bf) < Egy /O /t S 02 (f) ds dt] (subadditivity + fluctuation rep.)
i k=1
22

VAN

2

() S (m+1) (m+2) /Oﬁ/tﬁsmdsdt

m=0



The sum of conditional variances, VI

Lemma: Let 8 € (0,1) and suppose that for all m > 2

2% (f)
2
52

2(1-p)

ml.

S B [(f — Buf)™] <
k=1

Then  Ent(8f) < sEgr |22 (£)].

Proof:

2 0
Ent (Bf) < Sor [2 (f)] > (m+1)(m+2) /:/tﬁsmdsdt

m=0
>2 s
= Eﬁf[z (f)]ﬁz S (m+1) 8™ [

m=0



Spin-off: another version of Bernstein's inequality

Theorem (McDiarmid 1998): If f satisfies the conditions of the lemma then

Pr{f—Ef >t}

<

VAN

IA

IA

inf )exp ([3 /03 Entﬂy(;f)d’y — 675)

Be(0,1

. o1 2
Bel?({l) exp (5/0 2(1_7)2E7f [Z (f)} dv—&)

inf  exp sz H — [t
Be(0.1) 6

_ 42
(= n], )




Another bound on entropy, |

2
: 2, . _ : k
Define Doy o = Ek; (f — ylggc Syf>
_ B2 2
Lemma: Ent (8f) < S by [D (f)]

Proof: For 0 < s < . Let h:= f —inf cx Sly“f.

%Ek,sf G

"
= Epaon |h3] = By sn |B?] Epsn [h] > 0
2
(7= iz 587)

=0 U%,sf (f)

IA

Bl st < Ergf

(

f— in

yc

k
(sb7

;




Another bound on entropy, Il

2
Define D2f D= zk: (f—yigﬁ(S{jf)
Lemma: Ent (Bf) < G D2 (f)]

Proof: For 0 < s < 3.

Ent (Bf) < Egy /5 [ f:ai,sf<f> ds dt]

2
Egy // ZEkﬁf ( —;g;5§f>

2
— %Eﬁf [DZ (f)} (because Eg; [Ek,ﬁf [” = FEgyl] ) O

AN

ds dt]



Spin-off concentration inequality

Theorem: Let f: A" — R

Pr{f—FEf >t} < inf exp(B/OBEnt(;f)dw—Bt>

B>0 Y
2 2

S jnf exp 2
42

<

= 22|

0@

Applications: Concentration of convex Lipschitz functions, shortest T.S.P.,

largest eigenvalue of random symmetric matrix, and many more ...



Self-bounded functions

Lemma: If D2f < a? f then for 8 € (O, 2/a2)

n B |ePf] < 1_525/21}?[]‘].

Proof:
in B [SU-ED)] 5/5 Ent (7/)
0

dry
B ”
é/E

25/ __5|nE[5f]

A

IA



The sum of conditional variances is self-bounded, |

Proposition:

D*(22(f)) < J(£)* Z2(f)

Proof: Fix x € X™ and let z € X", z; := arg min, 5222 (f).

D?(2(n) = (2082 ()’

- Z(Z (o3 (1) — 5,07 (f))) |

I \k:k£l



The sum of conditional variances is self-bounded, 1l

Proposition:

D*(22(f)) < J(£)* Z2(f)

Proof: Fix x € X™ and let z € X", z; := arg min, 5222 (f).

5> ( S (o2(f) - SLo? <f>>)

ki £

4D (22 (f))

— Z(ZEW .| (Dk, f)z—(Dg’j,yfshilf)z])2

I \k#£l



The sum of conditional variances is self-bounded, I

Proposition:

D*(22(f)) < J(£)* Z2(f)

Proof: Fix x € X™ and let z € X", z; := arg min, 5222 (f).

4D? (22 (f))
2
=5 (5 P [P - (9h)1])
2
- ; (];# E(y.y’)Nui KDl;,y’f - Dl;,y’sézf) (D]?j,y’f T Dly{,y’sézf)})



The sum of conditional variances is self-bounded, 1V

Proposition:

D*(22(f)) < J(£)* Z2(f)

Proof: Fix x € X™ and let z € X", z; := arg min, 8222 (f).

4D? (22 (f))

2
B zl: (l;# Bty :<D§,y’f B D’J’y,Silf) (D]:lj.y’f + Dlyf,y’sézf)o

] 5 )
SZZE /Nsz’ f_Séf ZE /Nsz /f—l-Dk /Sif
I kektl (y,y) By LYY ( [ )] oy (y,y) [T [ Y,y Y,y I }



The sum of conditional variances is self-bounded, V

Proposition:

D*(22(f)) < J(£)* Z2(f)

Proof: Fix x € X™ and let z € X", z; := arg min, 8222 (f).

4D? (22 (f))
2 2
< zl: k%ﬂ E(y,y’)Nui [D]:ljy’ (f B Sézfﬂ k%ﬂ E(y,y’)Nui [Dl;,y’f T Dlyc,y’sélf}

<23 Y sup [DLDE ()] (E2(5) + SLE2(F))

| k:k#£1 220y
<45 (f)?Z%(f) O



Proof of Bernstein's inequality, |

Let 0 <y < B <1/ (1+J/2),
0:=7/(J(1—7) = 7/ (21 -7)°) <0 <2/J2

72

2(1—7)°

(B )+ 5 (0] (Fenche-Youre)

0 Ent(vf) <

E. ¢ [«9 52 (f)] (1st Lemma)

~

<
- 2(1—9)

2

Ent (+f) (e— ! 7)2) < S [0]

n vJ nE |5Z2(F)
Ent (V) S a2 E[ ]




Proof of Bernstein's inequality, Il

Let 0 <y < B <1/ (1+J/2),
0:=7/(J(1—7) = 7/ (21 -7)°) <0 <2/J2

() < 5o f( A E 22 0)]
In E [6022(f)] < — f29/2E [22 (f)] (self bounded =2 (f))
= — (171{]/2)715 =2 ()]
Ent (vf) < h B[22 (f)

2(1—(1+J/2)~)?



Proof of Bernstein's inequality, I

Let 0 <y < B <1/ (1+J/2),

i 2
Bt () < T ar = V)]
_ . BEnt(vf),
Pr{f—Ef >t} < 56(0,1/'?{”/2))@@ (B/O 2 dry Bt>

IA

Be(0,1/(14+J/2))

2
inf exp (E [Z (f)} 62

INA

42 -
=P (2 (E[=2(H)] +(1+7/2) t))
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