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Setting

X a space of potential observations
f : Xn → R a bounded function
X = (X1, ...,Xn) a random vector of independent observations

Question

Which properties of f could guarantee,
that observation of X provides useful information on W = f (X)
(that is on E [f ] = E [W ], σ2 [f ] = σ2 [W ], other moments etc)?



Additive functions work well

f (x) =
n∑
i=1

gi (xi) with gi : X → [a, b] .

Then we have

normal approximation
f (X)−Ef
σ (f )

≈ N (0, 1) for large n

Hoeffding inequality Pr {f (X)−Ef > t} ≤ exp

(
−2t2

n (b− a)2

)

Bernstein inequality Pr {f (X)−Ef > t} ≤ exp

(
−t2

2σ2 (f ) + 2 (b− a) t/3

)



What about functions which are not additive?



The bounded difference inequality

Partial difference operator

Dk
y,y′f (x) := f (...,xk−1, y,xk+1, ...)− f

(
...,xk−1, y

′,xk+1, ...
)
.

Define maximal variation in any argument

M (f ) := max
k

sup
x,y,y′

Dk
y,y′f (x) .

Theorem (Hoeffding, Azuma, McDiarmid):

Pr {f −Ef > t} ≤ exp
(
−2t2

nM (f )2

)
, for all f : Xn→ R

Extends Hoeffding’s inequality to general functions.



What about functions
which are close to being additive?



Interaction

J (f )kl (x) =
{
supy,y′,z,z′D

l
z,z′D

k
y,y′f (x) if k 6= l

0 if k = l
, for x ∈ Xn

The interaction matrix J vanishes for additive functions.

A measure of total interaction:

sup
x∈Xn

∥∥J (f )kl (x)
∥∥
Fr = sup

x∈Xn

√√√√√∑
k 6=l

 sup
y,y′,z,z′

Dl
z,z′D

k
y,y′f (x)

2

≤ n max
k,l:k 6=l

sup
x,y,y′,z,z′

Dl
z,z′D

k
y,y′f (x)

= : J (f ) = simplified interaction functional.



Seminorms

For bounded f : Xn → R define

M (f ) : = max
k

sup
x,y,y′

Dk
y,y′f (x)

J (f ) : = n max
k,l:k 6=l

sup
x,y,y′,z,z′

Dl
z,z′D

k
y,y′f (x) .

I M is a seminorm which vanishes on constants
I J is a seminorm which vanishes on additive functions



Weak interactions

Definition:
f : Xn → R has (a, b)-weak interactions,
if M (f ) ≤ a/n and J (f ) ≤ b/n

or equivalently

∀k, l ∈ {1, ...,n} , k 6= l, x ∈ Xn, y, y′, z, z′ ∈ X ,

Dk
y,y′f (x) ≤

a

n
and Dl

z,z′D
k
y,y′f (x) ≤

b

n2
.

A sequence (fn)n≥2 of functions fn : Xn → R has (a, b)-weak interactions
if every fn has (a, b)-weak interactions.



Outline

Concentration and other properties of weak interactions:
I Bernstein’s inequality
I Normal approximation
I Variance estimation
I Empirical bounds

Examples of weak interactions:
I U- and V-statistics
I Lipschitz L-statistics
I Generalization error of `2-regularized classification
I Properties of the Gibbs algorithm



The bias of the Efron-Stein inequality

k-th conditional variance : σ2k (f ) (x) =
1

2
E(y,y′)∼µk×µk

[(
Dk
y,y′f (x)

)2]
sum of conditional variances : Σ2 (f ) (x) =

n∑
k=1

σ2k (f ) (x)

Efron-Stein inequality : σ2 (f ) ≤ E
[
Σ2 (f )

]

Theorem (Houdré, 1998):

E
[
Σ2 (f )

]
≤ σ2 (f )+

1

4

∑
k,l:k 6=l

Ex,z,z′,y,y′

[(
Dl
zz′D

k
yy′f (x)

)2] ≤ σ2 (f )+ J (f )2
4

.

If f has weak interactions then σ2 (f ) = E
[
Σ2 (f )

]
+O

(
1/n2

)
.



Bernstein’s inequality

Theorem (M.2017): For bounded mble f : Xn → R

Pr {f −E [f ] > t} ≤ exp

 −t2

2E
[
Σ2 (f )

]
+ (2M (f ) /3+ J (f )) t


extends Bernstein’s inequality from sums to general functions.

See also Götze,Sambale 2017 and Bobkov, Götze, Sambale 2017.



Bernstein’s inequality

Theorem (M.2017): For bounded mble f : Xn → R

Pr {f −E [f ] > t} ≤ exp

 −t2

2E
[
Σ2 (f )

]
+ (2M (f ) /3+ J (f )) t


extends Bernstein’s inequality from sums to general functions.

Corollary: If f has (a, b)-weak interactions then
(using E

[
Σ2 (f )

]
≤ σ2 (f ) + J (f )2 /4)

∀δ ∈ (0, 1/e) with probability at least 1− δ

f ≤ E [f ] +
√
2σ2 (f ) ln (1/δ) +

(2a/3+ 2b) ln (1/δ)
n

.



Normal approximation

Let Z ∼ N (0, 1). Define distance to normality of r.v. W :

dN (W ) = sup

{∣∣∣∣∣E
[
h

(
W −E [W ]

σ (W )

)]
−E [h (Z)]

∣∣∣∣∣ : h a real Lipschitz-1 function
}
.

Theorem (M. 2017, nach Chatterjee 2008):

dN
(
f
(

X′
))
≤
√
nM (f ) (J (f ) +M (f ))

σ2 (f )
+
nM (f )3

2σ3 (f )
.



Normal approximation

Let Z ∼ N (0, 1). Define distance to normality of r.v. W :

dN (W ) = sup

{∣∣∣∣∣E
[
h

(
W −E [W ]

σ (W )

)]
−E [h (Z)]

∣∣∣∣∣ : h a real Lipschitz-1 function
}
.

Theorem (M. 2017, nach Chatterjee 2008):

dN
(
f
(

X′
))
≤
√
nM (f ) (J (f ) +M (f ))

σ2 (f )
+
nM (f )3

2σ3 (f )
.

If (fn) has (a, b)-weak interactions and σ (fn) ≥ Cn−p for constant C, then

dN
(
f
(

X′
))
≤ Ca (a+ b) + a3

C3n2−3p
.

(1/2 ≤ p < 2/3) =⇒ asymptotic normality.
(p = 1/2) =⇒ rate is n−1/2.



Estimating variance

Theorem (M. 2017): For any bounded f : Xn → R

there exists vf : Xn+1 → R such that
for any iid sequence X1, ...,Xn, ... with values in X
and for 0 < δ ≤ 1/e with probability at least 1− δ√

vf (X)−K1 (f )
√
ln (2/δ) ≤

√
σ2 (f ) ≤

√
vf (X) +K2 (f )

√
ln (2/δ)

with K1 (f ) = J (f ) /2+
√
2M (f )2 + 8J (f )2

and K2 (f ) =
√
2M (f )2 + 8J (f )2

Also: vf is an unbiased estimator for the Efron-Stein bound E
[
Σ2 (f )

]
.



The variance estimator

For any n and x ∈ Xn define

replacement operator Skyx = (x1, ...,xk−1, y,xk+1, ...,xn) ∈ Xn

deletion operator Sk−x = (x1, ...,xk−1,xk+1, ...,xn) ∈ Xn−1.
The variance estimator vf : Xn+1 → R is

vf (x) =
1

2 (n+ 1)

n+1∑
i=1

∑
j:j 6=i

(
f
(
S
j
−x
)
− f

(
S
j
−S

i
xj

x
))2

.

Needs O
(
n2
)
computations of f , but only a sample of O (n)

So for weak interactions with high probability√
σ2 (f ) =

√
vf (X) +O

(
1

n

)
.



Empirical bounds for weak interactions

Theorem (empirical Bernstein inequality, M., M.Pontil, 2018) :
If f has (a, b)-weak interactions and the Xi are iid, then for δ > 0 with
probability at least 1− δ

f (X) ≤ E [f ] +
√
2vf (X) ln (2/δ) +

(8a/3+ 5b) ln (2/δ)
n

.

Theorem (empirical normal approximation, M., M.Pontil, 2018):
If f has (a, b)-weak interactions and the Xi are iid, then for δ > 0 with
probability at least 1− δ

either

√
vf (X)

2
<

(
b/2+

√
2a2 + 8b2

)√
ln (1/δ)

n
,

or dN
(
f
(

X′
))
≤

4
(
a2 + ab

)
vf (X)n3/2 +

4a3

vf (X)
3/2 n2

.



Examples of functions with weak interactions

I U- and V-statistics
I Lipschitz L-statistics
I Generalization error of `2-regularized classification
I Properties of the Gibbs algorithm



V- and U-statistics

Fix 1 ≤ m < n,
for j = (j1, ..., jm) ∈ {1, ...,n}m let

κj : Xm → R,
∣∣∣κj
∣∣∣ ≤ 1

and define V ,U : Xm → R,

V (x) = n−m
∑

j∈{1,...,n}m
κj
(
xj1, ...,xjm

)

U (x) =
(n
m

)−1 ∑
1≤j1<...<jm≤m

κj
(
xj1, ...,xjm

)

V = Von Mises statistic (1947)
U = Unbiased statistic (Hoeffding, 1948)



V- and U-statistics have weak interactions
V (x) = n−m

∑
j∈{1,...,n}m

κj
(
xj1, ...,xjm

)

Dk
y,y′V (x) ≤

2

nm
|{j : k ∈ j}| = 2

nm

∣∣∣∣∣∣
m⋃
r=1

{
j : r = min

ji=k
i

}∣∣∣∣∣∣
=

2mnm−1

nm
=
2m

n

Dl
z,z′D

k:k 6=l
y,y′ V (x) ≤

4

nm
|{j : k, l ∈ j}| = 4

nm

∣∣∣∣∣∣
⋃

r,s:r 6=s

{
j : r = min

ji=k
i∧ s = min

ji=l
i

}∣∣∣∣∣∣
=

4m (m− 1)nm−2

nm
=
4m (m− 1)

n2
.

So V has (2m, 4m (m− 1))-weak interactions!
Similar argument and result for U (M, 2017)



Lipschitz L-statistics

X = [a, b] and
(
x(1), ...,x(n)

)
= order statistic of x ∈Xn

f (x) =
1

n

n∑
i=1

F (i/n) x(i)

where F : [0, 1]→ R has Lipschitz constant ‖F‖Lip .

Examples: mean, smoothly trimmed mean, smoothed quantiles, etc.
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A "smoothed median"



Lipschitz L-statistics have weak interactions

For y, y′ ∈ R define[[
y, y′

]]
=
[
min

{
y, y′

}
, max

{
y, y′

}]
.

Then (M, M.Pontil, 2018) for k 6= l

Dk
y,y′f (x) ≤

‖F‖∞ diam [[y, y′]]
n

Dl
z,z′D

k
y,y′f (x) ≤

‖F‖Lip diam ([[z, z′]] ∩ [[y, y′]])
n2

=⇒ f has
(
‖F‖∞ (b− a) , ‖F‖Lip (b− a)

)
-weak interactions



Generalization of `2-regularized algorithms

(H, 〈., .〉 , ‖.‖) a real Hilbert space with unit ball X
define g : Xn → H by

returned weight vector g (x) = arg min
w∈H

1

n

n∑
i=1

` (〈xi,w〉) + λ ‖w‖2

empirical loss L̂ (x) =
1

n

∑
i

` (〈xi, g (x)〉) ,

true expected loss L (x) = E [` (〈X, g (x)〉)] ,
generalization error ∆ (x) = L (x)− L̂ (x)

Then ∆ has
(
O
(
λ−3/2

) ∥∥`′′∥∥∞ ,O (λ−3) ∥∥`′′′∥∥∞)-weak interactions!
(M. 2017)



A chain rule

Extend definition of M and J to Banach space-valued functions f : Xn → B

M (f ) = max
k

sup
x,y,y′

∥∥∥Dk
yy′f (x)

∥∥∥ and J (f ) = n max
k 6=l

sup
x,y,y′,z,z′

∥∥∥Dl
zz′D

k
yy′f (x)

∥∥∥ .
Lemma: B be a Banach space, U ⊆ B convex, f : Xn → U , F : U → R

be twice Fréchet-differentiable. Then

M (F ◦ f ) ≤ sup
v∈U

∥∥∥F ′ (v)∥∥∥M (f ) and

J (F ◦ f ) ≤ n sup
v∈U

∥∥∥F ′′ (v)∥∥∥M (f )2 + sup
v∈U

∥∥∥F ′ (v)∥∥∥ J (f ) .
If f has weak interactions and

∥∥F ′′ (v)∥∥ and ∥∥F ′ (v)∥∥ are bounded on U ,
then F ◦ f also has weak interactions.



Gibbs distributions

Ω a mble space of states/models/classifiers with probability measure ρ.
F : Ω→ R a "Hamiltonian" (energy or error function),
β > 0 an "inverse temperature"

Partition function : ZβF =
∫

Ω
e−βF (ω)dρ (ω)

Free energy : AβF = lnZβF

Gibbs distribution : dπβF (ω) = Z−1βF e
−βF (ω)dρ (ω)



The Gibbs algorithm
loss of model ω on datum x : ` (ω,x) where ` : Ω×X → [0, 1]

empirical loss on sample x : H (ω, x) =
1

n

n∑
n=1

` (ω,xi)

Gibbs measure for empirical loss : dπβH(.,x)
generic function on Ω : F : Ω→ [0, 1]

By the chain rule

Function on Xn has weak interactions
x 7→ AβH(.,x)

(
β, 2β2

)
x 7→

∫
Ω F (ω) dπβH(.,x) (ω)

(
2β, 6β2

)
x 7→

∫
ΩH (ω, x) dπβH(.,x) (ω)

(
2β + 1, 6β2 + 4β

)
x 7→ KL

(
dπβH(.,x), dπβF

) (
4β2 + 2β, 12β3 + 6β2

)



Open problems

I Softer interaction functional for variance estimation
I Weakly dependent variables
I Find more examples of functions with weak interactions

Thank you!
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