Concentration properties and examples

of functions with weak interactions
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Setting

X a space of potential observations
f: X" — IR a bounded function
X = (X1, ..., Xn) a random vector of independent observations

Question

Which properties of f could guarantee,
that observation of X provides useful information on W = f (X)
(that is on E [f] = E [W], o2 [f] = o2 [W], other moments etc)?



Additive functions work well

f(x)

Then we have

normal approximation

Hoeffding inequality

Bernstein inequality

n

Z gi (x;) with g; : X — [a, b] .
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N (0,1) for large n
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What about functions which are not additive?




The bounded difference inequality

Partial difference operator

Dl;’y,f (x):=f(. 2p_1.Y Tpa1,--.) — f (...,xk_l,y/,xk+1, ) .

Define maximal variation in any argument

- k
M (f):= m]?xxs’;z/ Dy o f (x).

Theorem (Hoeffding, Azuma, McDiarmid):

T
nM (f)?

Extends Hoeffding's inequality to general functions.

Pr{f—Ef>t}§exp< ),forallf:)c‘”—>]R



What about functions
which are close to being additive?

f

L ]

A‘ = distance to
additivity




Interaction

_ [ supy s DL DE Lf(x) i Kk #
J(f)kl(x)_{ g if k=1

The interaction matrix J vanishes for additive functions.

Cforx e X"

A measure of total interaction:

2
sup [[J(f)p X)[|p. = sup Z( sup D! D} ,f (X)>

XeXxXm xeXx™" \ k#l v,y 2,2

[ k
< m max_ su DD x
T gy d (%)

= :J(f) = simplified interaction functional.



Seminorms

For bounded f : X™ — IR define

A k
M(f) : = max sup/Dy’y/f (x)
XY,y
J(f) : =n max  sup D;Z,Dz’y,f (x) .

kkAEL gy o)) 2 o

» M is a seminorm which vanishes on constants
» J is a seminorm which vanishes on additive functions



Weak interactions

Definition:
f: X™ — R has (a, b)-weak interactions,
if M (f) <a/mnand J(f) <b/n

or equivalently

Vk,le{l,...,n} , k#Il,xe X" vy, vy, 2z 2 € X,
k
Dy f (x) <

a
n 2,2 Y,y n )

A sequence (fn), > of functions fr : X — R has (a, b)-weak interactions
if every fy has (a,_b)—weak interactions.



Outline

Concentration and other properties of weak interactions:
» Bernstein’s inequality

» Normal approximation

» Variance estimation

» Empirical bounds

Examples of weak interactions:

» U- and V-statistics

» Lipschitz L-statistics

» Generalization error of £»-regularized classification
» Properties of the Gibbs algorithm



The bias of the Efron-Stein inequality

" . 1 2
k-th conditional variance : o% (f) (x) = §E(y,y’)Nuk><Mk; [(le;,y’f (x))

sum of conditional variances : X2 (f) (x) = i o2 (f) (x)

=1
Efron-Stein inequality : o2 (f) < E [22 (f)]

Theorem (Houdré, 1998):

B[22 ()] <o®(f)+-

Ik 2
Z Ex,z,z’,y,y’ [(Dzz’Dyy’f (x))
kLAl

If f has weak interactions then o2 (f) = E [22 (f)] + O (1/77,2).



Bernstein's inequality

Theorem (M.2017): For bounded mble f: X" — R

_¢2
Prif - B>t = e (ZE Z2(f)] + @M (f) /347 () t)

extends Bernstein's inequality from sums to general functions.

See also Gotze,Sambale 2017 and Bobkov, Gétze, Sambale 2017.



Bernstein's inequality

Theorem (M.2017): For bounded mble f: X" — R

_¢2
Prif - B>t = e (ZE Z2(f)] + @M (f) /347 () t)

extends Bernstein's inequality from sums to general functions.

Corollary: If f has (a, b)-weak interactions then

(using B |22 (f)] < 02 (f) + 7 (£)* /4)
Vo € (0,1/e) with probability at least 1 — §

(2a/3+2b)In (1/6)

n

f<E[f]+1/202(f)In(1/8) +



Normal approximation

Let Z ~ N (0, 1). Define distance to normality of r.v. W:

dpr (W) = sup {|E [h (W;(];/[)WW —Eh (Z)]‘ . h a real Lipschitz-1 function}

Theorem (M. 2017, nach Chatterjee 2008):

A VM () (J(f) + M (f) | nM ()’
dN(f(X)) < ( )<(72Ef§ ( ))+ 203((f))'




Normal approximation

Let Z ~ N (0,1). Define distance to normality of r.v. W:

dy (W) = sup {|E [h (W;(fv[)m)] _Eh (Z)]‘ . b a real Lipschitz-1 function}

Theorem (M. 2017, nach Chatterjee 2008):

, nM (F)(J(f)+ M (f)) nM(f)3
dN(f(X)> S\f ( )((72Ef§ ( ))+ 203((}2)_

If (frn) has (a, b)-weak interactions and o (fn,) > Cn P for constant C, then

Ca(a+0b)+a3
/

v (F (X)) <= aom
(1/2 <p < 2/3) = asymptotic normality.
(p=1/2) = rateis n~1/2




Estimating variance

Theorem (M. 2017): For any bounded f : X" — R
there exists v s : X"+l R such that

for any iid sequence X7, ..., Xp, ... with values in X
and for 0 < § < 1/e with probablllty at least 1 —

\/’Uf \/In 2/5 < W/ O < ,/v —|—K2 \/In (2/5)

with K1 (f) = J(f)/2+\/2M(f)2‘|‘8J(f)2
and Ko (f) = 2M (£)2+8J (f)?

Also: v is an unbiased estimator for the Efron-Stein bound E [22 (f)]



The variance estimator

For any n and x € X" define

replacement operator Slyf

deletion operator SFx = (1, ...

The variance estimator vy X*tl L Ris

n+1

g 5,0

1=1 jij#i

vy (x) =

So for weak interactions with high probability

2 (f) = vf(X)+0(1>.

X = (xlpu

1£Uk—11 Yy, xl{j—i—l! oy Iy
,wk_1,$k+1,_”

x) - f(s78%,

n

) xn
Tn) € XL

M)

Needs O (nz) computations of f, but only a sample of O (n)



Empirical bounds for weak interactions

Theorem (empirical Bernstein inequality, M., M.Pontil, 2018) :

If f has (a,b)-weak interactions and the X, are iid, then for § > 0 with
probability at least 1 — ¢

, (8a/315b)In(2/6)

n

f(X) < BIf]+ /207 (X) In (2/5)

Theorem (empirical normal approximation, M., M.Pontil, 2018):

If f has (a,b)-weak interactions and the X, are iid, then for § > 0 with
probability at least 1 — §

vr (X) (b/2+ V242 +862) /In (1/9)
either > <

n
4 <a2 + ab) 43

o dN(f <Xl>) = ’Uf(X)n3/2+’Uf(X)3/2n2'




Examples of functions with weak interactions

» U- and V-statistics

» Lipschitz L-statistics

» Generalization error of £»-regularized classification
» Properties of the Gibbs algorithm



V- and U-statistics

Fix 1 < m <n,
forj = (41, ..., jm) € {1, ....,n}"" let

Rj:Xm%R,‘/{j‘Sl

and define V, U : X™ — IR,
Vix) = n—’m. > K (ajjl, ...,a:jm>

U = () > ()

1<1<...<gm<m

V' = Von Mises statistic (1947)
U = Unbiased statistic (Hoeffding, 1948)



V- and U-statistics have weak interactions

Vix) = n_m. > ; (a:jl,...,a:jm)

je{1,...n}"™"
" 2 , 2 ™. o
DyyV(x) < —CHj:kejil= "1 U1 j o7 = min s
’r‘:
B Zmnm_1_2m
- nm - n

kil 4 . : 4
DLDSV () < —Hjtkleil =—

U {i:r: mini/\S:mini}

r,S:TF£S Ji=k Ji=l

4m (m —1)n™=2  4m(m —1)

nm n2

So V has (2m, 4m (m — 1))-weak interactions!
Similar argument and result for U (M, 2017)



Lipschitz L-statistics

X = |a, b] and (:13(1), a:(,n)) — order statistic of x € X"

where F: [0,1] — R has Lipschitz constant ||F'[|1;,, -

Examples: mean, smoothly trimmed mean, smoothed quantiles, etc.

FO 47

A "smoothed median"



Lipschitz L-statistics have weak interactions

For y,y" € R define

v v/]] = [min {u,v'}  max{u,v/}].

Then (M, M.Pontil, 2018) for k # I

| F|| oo diam [[y, y']]
| diam (2. 2] O [fy, o))

Dy f (z) <

A

[ k
Dz,z’Dy,y’f (I) 2

—> f has (HFHOO (b—a) ., [[F|l L (b— a))—weak interactions



Generalization of ¢,-regularized algorithms

(H,{.,.),]||-]|) a real Hilbert space with unit ball X

define g : X — H by
returned weight vector g (x)

empirical loss L (x)

true expected loss L (x)

generalization error A (x)

Then A has (O ()\_3/2) 14" O (A_3) \]E”’}\w)—weak interactions!

(M. 2017)



A chain rule

Extend definition of M and J to Banach space-valued functions f : X — B
_ k _ [ k
M (f) = max sup Dy (@) and J () =m max sup [ DDyt (@)

Lemma: B be a Banach space, U C B convex, f : X" - U, F: U — R
be twice Fréchet-differentiable. Then

M(Fof) < sup|F'(v)|M(f) and
velU

J(Fof) < nsup |F"(v)| M(£)*+sup |F' (v)|| ] (£).
velU velU

If f has weak interactions and ||F" (v)|| and ||F’ (v)]| are bounded on U,
then F' o f also has weak interactions.



Gibbs distributions

() a mble space of states/models/classifiers with probability measure p.
F : Q) — R a "Hamiltonian" (energy or error function),

B > 0 an "inverse temperature"

Partition function : Zgp = /Q e PFW) g, (w)

Free energy : Agp =1InZgp

Gibbs distribution : drngp (w) = Zﬁ_;e_BF(w)dp (w)



The Gibbs algorithm

loss of model w on datum =z

empirical loss on sample x

Gibbs measure for empirical loss
generic function on ()

By the chain rule

Function on X"

¢(w,z) where £: ) x X — [0, 1]

H (w,x) = % i:lﬁ(w,mi)

AT 3 H (. x)
F:0Q —|0,1]

has weak interactions

X AﬂH(,X) /81252)
x = Jo F (w)drgp W) | (28,652
X Jo H (w,x) drgp 0 () | (28 41,667+ 46)

X — KL (dﬂ-BH(.,x)’dﬂ-ﬁF)

482 + 28,12 + 632



Open problems

» Softer interaction functional for variance estimation
» Weakly dependent variables
» Find more examples of functions with weak interactions

Thank you!
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