Concentration properties and examples

of functions with weak interactions

Andreas Maurer

Setting

\mathcal{X} a space of potential observations
$f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ a bounded function
$\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ a random vector of independent observations

Question

Which properties of f could guarantee, that observation of \mathbf{X} provides useful information on $W=f(\mathbf{X})$ (that is on $E[f]=E[W], \sigma^{2}[f]=\sigma^{2}[W]$, other moments etc)?

Additive functions work well

$$
f(\mathbf{x})=\sum_{i=1}^{n} g_{i}\left(x_{i}\right) \text { with } g_{i}: \mathcal{X} \rightarrow[a, b]
$$

Then we have
normal approximation

$$
\frac{f(\mathbf{X})-E f}{\sigma(f)} \approx \mathcal{N}(0,1) \text { for large } n
$$

Hoeffding inequality $\operatorname{Pr}\{f(\mathbf{X})-E f>t\} \leq \exp \left(\frac{-2 t^{2}}{n(b-a)^{2}}\right)$
Bernstein inequality $\operatorname{Pr}\{f(\mathbf{X})-E f>t\} \leq \exp \left(\frac{-t^{2}}{2 \sigma^{2}(f)+2(b-a) t / 3}\right)$

What about functions which are not additive?

The bounded difference inequality

Partial difference operator

$$
D_{y, y^{\prime}}^{k} f(\mathbf{x}):=f\left(\ldots, x_{k-1}, y, x_{k+1}, \ldots\right)-f\left(\ldots, x_{k-1}, y^{\prime}, x_{k+1}, \ldots\right)
$$

Define maximal variation in any argument

$$
M(f):=\max _{k} \sup _{\mathbf{x}, y, y^{\prime}} D_{y, y^{\prime}}^{k} f(\mathbf{x}) .
$$

Theorem (Hoeffding, Azuma, McDiarmid):

$$
\operatorname{Pr}\{f-E f>t\} \leq \exp \left(\frac{-2 t^{2}}{n M(f)^{2}}\right), \text { for all } f: \mathcal{X}^{n} \rightarrow \mathbb{R}
$$

Extends Hoeffding's inequality to general functions.

What about functions which are close to being additive?

Interaction

$$
\mathbf{J}(f)_{k l}(\mathbf{x})=\left\{\begin{array}{cl}
\sup _{y, y^{\prime}, z, z^{\prime}} D_{z, z^{\prime}}^{l} D_{y, y^{\prime}}^{k} f(\mathbf{x}) & \text { if } k \neq l \\
0 & \text { if } k=l
\end{array}, \text { for } \mathbf{x} \in \mathcal{X}^{n}\right.
$$

The interaction matrix \mathbf{J} vanishes for additive functions.

A measure of total interaction:

$$
\begin{aligned}
\sup _{\mathbf{x} \in \mathcal{X}^{n}}\left\|\mathbf{J}(f)_{k l}(\mathbf{x})\right\|_{F r} & =\sup _{\mathbf{x} \in \mathcal{X}^{n}} \sqrt{\sum_{k \neq l}\left(\sup _{y, y^{\prime}, z, z^{\prime}} D_{z, z^{\prime}}^{l} D_{y, y^{\prime}}^{k} f(\mathbf{x})\right)^{2}} \\
& \leq n \max _{k, l: k \neq l} \sup _{\mathbf{x}, y, y^{\prime}, z, z^{\prime}} D_{z, z^{\prime}}^{l} D_{y, y^{\prime}}^{k} f(\mathbf{x}) \\
& =: J(f)=\text { simplified interaction functional. }
\end{aligned}
$$

Seminorms

For bounded $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ define

$$
\begin{aligned}
M(f) & :=\max _{k} \sup _{\mathbf{x}, y, y^{\prime}} D_{y, y^{\prime}}^{k} f(\mathbf{x}) \\
J(f) & :=n \max _{k, l: k \neq l} \sup _{\mathbf{x}, y, y^{\prime}, z, z^{\prime}} D_{z, z^{\prime}}^{l} D_{y, y^{\prime}}^{k} f(\mathbf{x}) .
\end{aligned}
$$

- M is a seminorm which vanishes on constants
- J is a seminorm which vanishes on additive functions

Weak interactions

Definition:

$f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ has (a, b)-weak interactions,
if $M(f) \leq a / n$ and $J(f) \leq b / n$
or equivalently
$\forall k, l \in\{1, \ldots, n\}, k \neq l, \mathbf{x} \in \mathcal{X}^{n}, y, y^{\prime}, z, z^{\prime} \in \mathcal{X}$,

$$
D_{y, y^{\prime}}^{k} f(\mathbf{x}) \leq \frac{a}{n} \text { and } D_{z, z^{\prime}}^{l} D_{y, y^{\prime}}^{k} f(\mathbf{x}) \leq \frac{b}{n^{2}}
$$

A sequence $\left(f_{n}\right)_{n \geq 2}$ of functions $f_{n}: \mathcal{X}^{n} \rightarrow \mathbb{R}$ has (a, b)-weak interactions if every f_{n} has (a, b)-weak interactions.

Outline

Concentration and other properties of weak interactions:

- Bernstein's inequality
- Normal approximation
- Variance estimation
- Empirical bounds

Examples of weak interactions:

- U- and V-statistics
- Lipschitz L-statistics
- Generalization error of ℓ_{2}-regularized classification
- Properties of the Gibbs algorithm

The bias of the Efron-Stein inequality
k-th conditional variance $: \sigma_{k}^{2}(f)(\mathbf{x})=\frac{1}{2} E_{\left(y, y^{\prime}\right) \sim \mu_{k} \times \mu_{k}}\left[\left(D_{y, y^{\prime}}^{k} f(\mathbf{x})\right)^{2}\right]$
sum of conditional variances : $\Sigma^{2}(f)(\mathbf{x})=\sum_{k=1}^{n} \sigma_{k}^{2}(f)(\mathbf{x})$
Efron-Stein inequality : $\sigma^{2}(f) \leq E\left[\Sigma^{2}(f)\right]$

Theorem (Houdré, 1998):
$E\left[\Sigma^{2}(f)\right] \leq \sigma^{2}(f)+\frac{1}{4} \sum_{k, l: k \neq l} E_{\mathbf{x}, z, z^{\prime}, y, y^{\prime}}\left[\left(D_{z z^{\prime}}^{l} D_{y y^{\prime}}^{k} f(\mathbf{x})\right)^{2}\right] \leq \sigma^{2}(f)+\frac{J(f)^{2}}{4}$.
If f has weak interactions then $\sigma^{2}(f)=E\left[\Sigma^{2}(f)\right]+O\left(1 / n^{2}\right)$.

Bernstein's inequality

Theorem (M.2017): For bounded mble $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$

$$
\operatorname{Pr}\{f-E[f]>t\} \leq \exp \left(\frac{-t^{2}}{2 E\left[\Sigma^{2}(f)\right]+(2 M(f) / 3+J(f)) t}\right)
$$

extends Bernstein's inequality from sums to general functions.

See also Götze,Sambale 2017 and Bobkov, Götze, Sambale 2017.

Bernstein's inequality

Theorem (M.2017): For bounded mble $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$

$$
\operatorname{Pr}\{f-E[f]>t\} \leq \exp \left(\frac{-t^{2}}{2 E\left[\Sigma^{2}(f)\right]+(2 M(f) / 3+J(f)) t}\right)
$$

extends Bernstein's inequality from sums to general functions.

Corollary: If f has (a, b)-weak interactions then
(using $E\left[\Sigma^{2}(f)\right] \leq \sigma^{2}(f)+J(f)^{2} / 4$)
$\forall \delta \in(0,1 / e)$ with probability at least $1-\delta$

$$
f \leq E[f]+\sqrt{2 \sigma^{2}(f) \ln (1 / \delta)}+\frac{(2 a / 3+2 b) \ln (1 / \delta)}{n}
$$

Normal approximation

Let $Z \sim \mathcal{N}(0,1)$. Define distance to normality of r.v. W :
$d_{\mathcal{N}}(W)=\sup \left\{\left|E\left[h\left(\frac{W-E[W]}{\sigma(W)}\right)\right]-E[h(Z)]\right|: h\right.$ a real Lipschitz-1 function $\}$
Theorem (M. 2017, nach Chatterjee 2008):

$$
d_{\mathcal{N}}\left(f\left(\mathbf{X}^{\prime}\right)\right) \leq \frac{\sqrt{n} M(f)(J(f)+M(f))}{\sigma^{2}(f)}+\frac{n M(f)^{3}}{2 \sigma^{3}(f)}
$$

Normal approximation

Let $Z \sim \mathcal{N}(0,1)$. Define distance to normality of r.v. W :
$d_{\mathcal{N}}(W)=\sup \left\{\left|E\left[h\left(\frac{W-E[W]}{\sigma(W)}\right)\right]-E[h(Z)]\right|: h\right.$ a real Lipschitz-1 function $\}$
Theorem (M. 2017, nach Chatterjee 2008):

$$
d_{\mathcal{N}}\left(f\left(\mathbf{X}^{\prime}\right)\right) \leq \frac{\sqrt{n} M(f)(J(f)+M(f))}{\sigma^{2}(f)}+\frac{n M(f)^{3}}{2 \sigma^{3}(f)}
$$

If $\left(f_{n}\right)$ has (a, b)-weak interactions and $\sigma\left(f_{n}\right) \geq C n^{-p}$ for constant C, then

$$
d_{\mathcal{N}}\left(f\left(\mathbf{X}^{\prime}\right)\right) \leq \frac{C a(a+b)+a^{3}}{C^{3} n^{2-3 p}}
$$

$(1 / 2 \leq p<2 / 3) \Longrightarrow$ asymptotic normality.
$(p=1 / 2) \Longrightarrow$ rate is $n^{-1 / 2}$.

Estimating variance

Theorem (M. 2017): For any bounded $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ there exists $v_{f}: \mathcal{X}^{n+1} \rightarrow \mathbb{R}$ such that for any iid sequence $X_{1}, \ldots, X_{n}, \ldots$ with values in \mathcal{X} and for $0<\delta \leq 1$ / e with probability at least $1-\delta$

$$
\begin{gathered}
\sqrt{v_{f}(\mathbf{X})}-K_{1}(f) \sqrt{\ln (2 / \delta)} \leq \sqrt{\sigma^{2}(f)} \leq \sqrt{v_{f}(\mathbf{X})}+K_{2}(f) \sqrt{\ln (2 / \delta)} \\
\text { with } K_{1}(f)=J(f) / 2+\sqrt{2 M(f)^{2}+8 J(f)^{2}} \\
\text { and } K_{2}(f)=\sqrt{2 M(f)^{2}+8 J(f)^{2}}
\end{gathered}
$$

Also: v_{f} is an unbiased estimator for the Efron-Stein bound $E\left[\Sigma^{2}(f)\right]$.

The variance estimator

For any n and $\mathbf{x} \in \mathcal{X}^{n}$ define
replacement operator

$$
\begin{aligned}
S_{y}^{k} \mathbf{x} & =\left(x_{1}, \ldots, x_{k-1}, y, x_{k+1}, \ldots, x_{n}\right) \in \mathcal{X}^{n} \\
S_{-}^{k} \mathbf{x} & =\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right) \in \mathcal{X}^{n-1}
\end{aligned}
$$

deletion operator
The variance estimator $v_{f}: \mathcal{X}^{n+1} \rightarrow \mathbb{R}$ is

$$
v_{f}(\mathbf{x})=\frac{1}{2(n+1)} \sum_{i=1}^{n+1} \sum_{j: j \neq i}\left(f\left(S_{-}^{j} \mathbf{x}\right)-f\left(S_{-}^{j} S_{x_{j}}^{i} \mathbf{x}\right)\right)^{2} .
$$

Needs $O\left(n^{2}\right)$ computations of f, but only a sample of $O(n)$
So for weak interactions with high probability

$$
\sqrt{\sigma^{2}(f)}=\sqrt{v_{f}(\mathbf{X})}+O\left(\frac{1}{n}\right)
$$

Empirical bounds for weak interactions

Theorem (empirical Bernstein inequality, M., M.Pontil, 2018) :
If f has (a, b)-weak interactions and the X_{i} are iid, then for $\delta>0$ with probability at least $1-\delta$

$$
f(\mathbf{X}) \leq E[f]+\sqrt{2 v_{f}(\mathbf{X}) \ln (2 / \delta)}+\frac{(8 a / 3+5 b) \ln (2 / \delta)}{n}
$$

Theorem (empirical normal approximation, M., M.Pontil, 2018):
If f has (a, b)-weak interactions and the X_{i} are iid, then for $\delta>0$ with probability at least $1-\delta$

$$
\text { either } \frac{\sqrt{v_{f}(\mathbf{X})}}{2}<\frac{\left(b / 2+\sqrt{2 a^{2}+8 b^{2}}\right) \sqrt{\ln (1 / \delta)}}{n}
$$

or

$$
d_{\mathcal{N}}\left(f\left(\mathbf{X}^{\prime}\right)\right) \leq \frac{4\left(a^{2}+a b\right)}{v_{f}(\mathbf{X}) n^{3 / 2}}+\frac{4 a^{3}}{v_{f}(\mathbf{X})^{3 / 2} n^{2}}
$$

Examples of functions with weak interactions

- U- and V-statistics
- Lipschitz L-statistics
- Generalization error of ℓ_{2}-regularized classification
- Properties of the Gibbs algorithm

V- and U-statistics

Fix $1 \leq m<n$, for $\mathbf{j}=\left(j_{1}, \ldots, j_{m}\right) \in\{1, \ldots, n\}^{m}$ let

$$
\kappa_{\mathfrak{j}}: \mathcal{X}^{m} \rightarrow \mathbb{R},\left|\kappa_{\mathfrak{j}}\right| \leq 1
$$

and define $V, U: \mathcal{X}^{m} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& V(\mathbf{x})=n^{-m} \sum_{\mathbf{j} \in\{1, \ldots, n\}^{m}} \kappa_{\mathbf{j}}\left(x_{j_{1}}, \ldots, x_{j_{m}}\right) \\
& U(\mathbf{x})=\binom{n}{m}^{-1} \sum_{1 \leq j_{1}<\ldots<j_{m} \leq m} \kappa_{\mathbf{j}}\left(x_{\left.j_{1}, \ldots, x_{j_{m}}\right)}\right.
\end{aligned}
$$

$V=$ Von Mises statistic (1947)
$U=$ Unbiased statistic (Hoeffding, 1948)

V- and U-statistics have weak interactions

$$
\begin{aligned}
V(\mathbf{x}) & =n^{-m} \sum_{\mathbf{j} \in\{1, \ldots, n\}^{m}} \kappa_{\mathbf{j}}\left(x_{j_{1}}, \ldots, x_{j_{m}}\right) \\
D_{y, y^{\prime}}^{k} V(\mathbf{x}) & \leq \frac{2}{n^{m}}|\{\mathfrak{j}: k \in \mathbf{j}\}|=\frac{2}{n^{m}}\left|\bigcup_{r=1}^{m}\left\{\mathbf{j}: r=\min _{j_{i}=k} i\right\}\right| \\
& =\frac{2 m n^{m-1}}{n^{m}}=\frac{2 m}{n} \\
D_{z, z^{z}}^{l} D: D_{y, y^{\prime}}^{k: k \neq l} V(\mathbf{x}) & \left.\leq \frac{4}{n^{m}}|\{\mathbf{j}: k, l \in \mathbf{j}\}|=\frac{4}{n^{m}} \right\rvert\, \bigcup_{r, s: r \neq s}\left\{\mathbf{j}: r=\min _{j_{i}=k} i \wedge s=\min _{j_{i}=l} i\right\} \\
& =\frac{4 m(m-1) n^{m-2}}{n^{m}}=\frac{4 m(m-1)}{n^{2}} .
\end{aligned}
$$

So V has $(2 m, 4 m(m-1))$-weak interactions!
Similar argument and result for $U(\mathrm{M}, 2017)$

Lipschitz L-statistics

$\mathcal{X}=[a, b]$ and $\left(x_{(1)}, \ldots, x_{(n)}\right)=$ order statistic of $\mathbf{x} \in \mathcal{X}^{n}$

$$
f(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} F(i / n) x_{(i)}
$$

where $F:[0,1] \rightarrow \mathbb{R}$ has Lipschitz constant $\|F\|_{\text {Lip }}$.
Examples: mean, smoothly trimmed mean, smoothed quantiles, etc.

A "smoothed median"

Lipschitz L-statistics have weak interactions

For $y, y^{\prime} \in \mathbb{R}$ define

$$
\left[\left[y, y^{\prime}\right]\right]=\left[\min \left\{y, y^{\prime}\right\}, \max \left\{y, y^{\prime}\right\}\right] .
$$

Then (M, M.Pontil, 2018) for $k \neq l$

$$
\begin{aligned}
D_{y, y^{\prime}}^{k} f(x) & \leq \frac{\|F\|_{\infty} \operatorname{diam}\left[\left[y, y^{\prime}\right]\right]}{n} \\
D_{z, z^{\prime}}^{l} D_{y, y^{\prime}}^{k} f(x) & \leq \frac{\|F\|_{L i p} \operatorname{diam}\left(\left[\left[z, z^{\prime}\right]\right] \cap\left[\left[y, y^{\prime}\right]\right]\right)}{n^{2}}
\end{aligned}
$$

$\Longrightarrow f$ has $\left(\|F\|_{\infty}(b-a),\|F\|_{\text {Lip }}(b-a)\right)$-weak interactions

Generalization of ℓ_{2}-regularized algorithms

$(H,\langle.,\rangle,.\|\|$.$) a real Hilbert space with unit ball \mathcal{X}$ define $g: \mathcal{X}^{n} \rightarrow H$ by

$$
\begin{aligned}
\text { returned weight vector } g(\mathbf{x}) & =\arg \min _{w \in H} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle x_{i}, w\right\rangle\right)+\lambda\|w\|^{2} \\
\text { empirical loss } \quad \hat{L}(\mathbf{x}) & =\frac{1}{n} \sum_{i} \ell\left(\left\langle x_{i}, g(\mathbf{x})\right\rangle\right), \\
\text { true expected loss } \quad L(\mathbf{x}) & =E[\ell(\langle X, g(\mathbf{x})\rangle)], \\
\text { generalization error } \quad \Delta(\mathbf{x}) & =L(\mathbf{x})-\hat{L}(\mathbf{x})
\end{aligned}
$$

Then Δ has $\left(O\left(\lambda^{-3 / 2}\right)\left\|\ell^{\prime \prime}\right\|_{\infty}, O\left(\lambda^{-3}\right)\left\|\ell^{\prime \prime \prime}\right\|_{\infty}\right)$-weak interactions! (M. 2017)

A chain rule

Extend definition of M and J to Banach space-valued functions $f: \mathcal{X}^{n} \rightarrow B$ $M(f)=\max _{k} \sup _{x, y, y^{\prime}}\left\|D_{y y^{\prime}}^{k} f(x)\right\|$ and $J(f)=n \max _{k \neq l} \sup _{x, y, y^{\prime}, z, z^{\prime}}\left\|D_{z z^{\prime}}^{l} D_{y y^{\prime}}^{k} f(x)\right\|$.
Lemma: B be a Banach space, $U \subseteq B$ convex, $f: \mathcal{X}^{n} \rightarrow U, F: U \rightarrow \mathbb{R}$ be twice Fréchet-differentiable. Then

$$
\begin{aligned}
M(F \circ f) & \leq \sup _{v \in U}\left\|F^{\prime}(v)\right\| M(f) \text { and } \\
J(F \circ f) & \leq n \sup _{v \in U}\left\|F^{\prime \prime}(v)\right\| M(f)^{2}+\sup _{v \in U}\left\|F^{\prime}(v)\right\| J(f)
\end{aligned}
$$

If f has weak interactions and $\left\|F^{\prime \prime}(v)\right\|$ and $\left\|F^{\prime}(v)\right\|$ are bounded on U, then $F \circ f$ also has weak interactions.

Gibbs distributions

Ω a mble space of states/models/classifiers with probability measure ρ. $F: \Omega \rightarrow \mathbb{R}$ a "Hamiltonian" (energy or error function),
$\beta>0$ an "inverse temperature"

$$
\begin{aligned}
\text { Partition function : } & Z_{\beta F}=\int_{\Omega} e^{-\beta F(\omega)} d \rho(\omega) \\
\text { Free energy : } & A_{\beta F}=\ln Z_{\beta F} \\
\text { Gibbs distribution : } & d \pi_{\beta F}(\omega)=Z_{\beta F}^{-1} e^{-\beta F(\omega)} d \rho(\omega)
\end{aligned}
$$

The Gibbs algorithm

$$
\begin{aligned}
\text { Ioss of model } \omega \text { on datum } x & : \ell(\omega, x) \text { where } \ell: \Omega \times \mathcal{X} \rightarrow[0,1] \\
\text { empirical loss on sample } \mathbf{x} & : H(\omega, \mathbf{x})=\frac{1}{n} \sum_{n=1}^{n} \ell\left(\omega, x_{i}\right) \\
\text { Gibbs measure for empirical loss } & : d \pi_{\beta H(., \mathbf{x})} \\
\text { generic function on } \Omega & : F: \Omega \rightarrow[0,1]
\end{aligned}
$$

By the chain rule

Function on \mathcal{X}^{n}	has weak interactions
$\mathbf{x} \mapsto A_{\beta H(., \mathbf{x})}$	$\left(\beta, 2 \beta^{2}\right)$
$\mathbf{x} \mapsto \int_{\Omega} F(\omega) d \pi_{\beta H(., \mathbf{x})}(\omega)$	$\left(2 \beta, 6 \beta^{2}\right)$
$\mathbf{x} \mapsto \int_{\Omega} H(\omega, \mathbf{x}) d \pi_{\beta H(., \mathbf{x})}(\omega)$	$\left(2 \beta+1,6 \beta^{2}+4 \beta\right)$
$\mathbf{x} \mapsto K L\left(d \pi_{\beta H(., \mathbf{x})}, d \pi_{\beta F}\right)$	$\left(4 \beta^{2}+2 \beta, 12 \beta^{3}+6 \beta^{2}\right)$

Open problems

- Softer interaction functional for variance estimation
- Weakly dependent variables
- Find more examples of functions with weak interactions

Thank you!

References

[1] S.Bernstein, Theory of Probability, Moscow, 1927.
[2] S.Boucheron,G.Lugosi,P.Massart, Concentration Inequalities using the entropy method, Annals of Probability 31, Nr 3, 2003
[3] S.Boucheron, G.Lugosi, P.Massart, On concentration of self-bounding functions, Electronic Journal of Probability Vol. 14 (2009), Paper no. 64, 1884-1899, 2009
[4] S. Boucheron, G. Lugosi, P. Massart. Concentration Inequalities, Oxford University Press (2013)
[5] Efron, B., \& Stein, C. (1981). The jackknife estimate of variance. The Annals of Statistics, 586-596.
[6] M.Ledoux, The Concentration of Measure Phenomenon, AMS Surveys and Monographs 89, 2001.
[7] A.Maurer, Thermodynamics and concentration. Bernoulli 18.2 (2012): 434-454.
[8] Maurer, A. (2017). A Bernstein-type inequality for functions of bounded interaction. arXiv preprint arXiv:1701.06191.
[9] C.McDiarmid, Concentration, in Probabilistic Methods of Algorithmic Discrete Mathematics, p. 195-248. Springer, Berlin, 1998.
[10] J.M.Steele, An Efron-Stein inequality for nonsymmetric statistics, Annals of Statistics 14:753-758, 1986

