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1 Introduction

The purpose of this note is to extend some bounds for the expected suprema of
empirical processes to a more general, nonlinear setting. Let X = (X1, ..., Xn)
be a vector of independent random variables with values in X , X′ iid to X,
and let H be a finite class of functions h : X → [0, 1]. For x ∈ Xn and h ∈ H
we use xh to denote the vector xh = (h (x1) , ..., h (xn)) ∈ [0, 1]n and H (x) =
{xh : h ∈ H} ⊆ [0, 1]n. Now let f0 : [0, 1]n → R be the arithmetic mean

f0 (s1, ..., sn) :=
1

n

n∑
i=1

si for si ∈ [0, 1] .

Then it is not hard to show that

E sup
h∈H

[EX′f0 (X′h)− f0 (Xh)] ≤
2

n
ER (H (X)) ≤

√
2π

n
EG (H (X)) , (1)

where the Rademacher and Gaussian averages of a subset Y ⊆ Rn are

R (Y ) = E sup
y∈Y
〈ε,y〉 and G (Y ) = E sup

y∈Y
〈γ,y〉 .

Here ε = (ε1, ..., εn) and γ = (γ1, ..., γn) are vectors of independent Rademacher
and standard normal variables respectively.
The symmetrization inequalites (1) have proven very useful in statistical

learning theory ([1], [3] and many follow-up references). For a partial extension
to functions other than the arithmetic mean we make the following definition.

Definition 1 Suppose f : Xn → R. For k ∈ {1, ..., n} and y, y′ ∈ X , define the
k-th partial difference operator as

Dk
yy′f (x) = f (..., xk−1, y, xk+1, ...)− f (..., xk−1, y′, xk+1, ...) , for x ∈ Xn.
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If X ⊆ Rm define seminormsMLip and JLip on the vector space of real functions
f : Xn → R by

MLip (f) = max
k

sup
x∈Xn,y 6=y′∈X

Dk
yy′f (x)

‖y − y′‖ and

JLip (f) = n max
k 6=l

sup
x∈Xn,y 6=y′,z,z′∈X

Dl
zz′D

k
yy′f (x)

‖y − y′‖ .

The following is a nonlinear substitute for (1).

Theorem 2 Let X = (X1, ..., Xn) be a vector of independent random variables
with values in X , X′ iid to X, let H be a finite class of functions h : X → [0, 1]
and let f : [0, 1]n → R. Then

E sup
h∈H

[EX′f (X′h)− f (Xh)] ≤
√
JLip (f)

2
+ 2MLip (f)

2 (
64 EXG (H (X)) + 27

√
n
)

(2)
and

E sup
h∈H

[EX′f (X′h)− f (Xh)] ≤ 160
√
JLip (f)

2
+ 2MLip (f)

2 EXG (H (X)) .

Some remarks:
1. For the arithmetic mean f0 it is easy to see that MLip (f0) = 1/n and

JLip (f0) = 0, so the second inequality (which is typically weaker than the first)
recovers the Gaussian part of (1) up to a constant.
2. The constants 64, 27 and 160 are certainly not optimal. Instead they are

fruits of a laborious struggle to control the constants in Talagrands majorizing
measure theorem.
3. We only get the symmetrization inequality for the Gaussian widthG (H (X)).

It is however standard to bound this in terms of Rademacher averages with an
additional factor of

√
ln (n+ 1).

The utility of the above depends on how the seminormsMLip and JLip can be
controlled for the function f in question. If MLip (f) ≤ a/n and JLip (f) ≤ b/n
for constants a and b, we call f a function of weak Lipschitz interaction (WLI).
The class of WLI-functions is related to the class of weakly interacting functions
in [4]. Since by assumption f : [0, 1]n → R we have M (f) ≤ MLip (f) and
J (f) ≤ JLip (f), where M and J are the seminorms introduced in [4]. If f is
WLI the bounded difference inequality immediately yields the following.

Corollary 3 Under the conditions of Theorem 2 let f be (a, b)-WLI. Then for
any δ ∈ (0, 1) with probability at least 1− δ in the draw of X, we have for every
h ∈ H that

E [f (Xh)] ≤ f (Xh) +
√
a2 + b2

(
64EG (H (X))

n
+
27√
n

)
+ a

√
ln (1/δ)

n
.
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This extends the popular generalization bound in [1] to WLI-functions. For
the function f we may take U- or V-statistics with Lipschitz kernels, Lipschitz L-
statistics (such as smoothed quantiles or medians) and other weakly interacting
functions as in [4].

2 Proof of Theorem 2

The idea of the proof hinges on a result due to Michel Talagrand (see Theorem
15 in Talagrand 1987 or Theorem 2.1.5 in Talagrand 2005). It is a consequence
of the celebrated majorizing measure theorem (see e.g. Talagrand 1992).

Theorem 4 Let Xy be a random process with zero mean, indexed by a finite
set Y ⊂ Rm. Suppose that for any distinct members y, y′ ∈ Y and any t > 0

Pr {Xy −Xy′ > t} ≤ exp
(

−t2

2 ‖y − y′‖2

)
(3)

Then
E sup
y∈Y

Xy ≤ c G (Y )

where c is a universal constant.

Unfortunately the constant c which results from the proof is very large.
Nevertheless, as remarked in (Talagrand 1987), if X is a Gaussian process, then
Theorem 4 reduces to Slepian’s Lemma (Boucheron et al 2013), which inspires
the tantalizing conjecture that the optimal c could be in the order of unity.

To get reasonable constants we are forced to use the following constant-
conscious variant of Theorem 4, which will be proven in the next section.

Theorem 5 Suppose that {Xy}y∈Y is as in Theorem 4. For y0 ∈ A ⊆ Y let
ZA,y0be the random variable

ZA,y0 = sup
y∈A

Xy −Xy0 .

Suppose that for every A ⊆ Y and y0 ∈ A

Pr {ZA,y0 − E [ZA,y0 ] > t} ≤ exp
(

−t2

2 supy∈A ‖y − y0‖
2

)
. (4)

Then

E
[
sup
y∈Y

Xy

]
≤ 18G (Y ) + 11 diam (Y ) .

We also use the following concentration inequality (see e.g. [2].
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Theorem 6 Let (X , µ) be a probability space and f : Xn → R and define
V + (f) : Xn → R by

V + (f) (x) =

n∑
k=1

Ey∼µ
[(
f (x)− f

(
Skyx

))2
+

]
(here Skyx replaces the k-th coordinate of x by y).Then

Pr {f − Ef > t} ≤ exp
(

−t2
2 supx∈Xn V + (f) (x)

)
.

With Theorem 5 and Theorem 6 we can prove the following intermediate
result about processes defined on the Bernoulli cube {0, 1}n.

Theorem 7 Let µ be the uniform probability measure on {0, 1}n. Let Y ⊆ Rm
be finite and suppose that for every y ∈ Y there is a function Xy : {0, 1}n → R
such that Eµ [Xy] = 0, and for all y, y′ ∈ Y and σ ∈ {0, 1}n

n∑
k=1

Dk
10 (Xy (σ)−Xy′ (σ))

2 ≤ 2 ‖y − y′‖2 . (5)

Then

Eµ
[
max
y∈Y

Xy

]
≤ 18G (Y ) + 11 diam (Y ) ≤ 46G (Y ) .

Note that (5) and the bounded difference inequality ([2]) immediately give
the subgaussian condition (3), so if we don’t care about constants the result
follows directly from Talagrand’s Theorem 4. Also note that the last inequality
follows from diam(Y ) ≤

√
2π G (Y ).

Proof. We just need to show that the Xy satisfy the hypotheses of Theo-
rem 5. Let A ⊆ Y, y′ ∈ A and let Z : {0, 1}n → R be defined by Z (σ) =
maxy∈AXy (σ)−Xy′ (σ). Now fix σ for the moment and let y∗ the maximizer
in the definition of Z (σ). Then, letting σ(k) be equal to σ with the k-th bit
flipped,

V + (Z) (σ) =

n∑
k=1

Ey∈{0,1}

[(
Z (σ)− SkyZ (σ)

)2
+

]
≤ 1

2

∑
k

(
Z (σ)− Z

(
σ(k)

))2
+

≤ 1

2

∑
k

(
Xy∗ (σ)−Xy′ (σ)−

(
Xy∗

(
σ(k)

)
−Xy′

(
σ(k)

)))2
=

1

2

n∑
k=1

Dk
10 (Xy∗ (σ)−Xy′ (σ))

2 ≤ ‖y − y′‖2 .
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It follows from Theorem 6 that

Pr
σ

{
max
y∈A

Xy (σ)−Xy′ (σ)− E
[
max
y∈A

Xy

]
> t

}
≤ exp

(
−t2

2 ‖y − y′‖2

)
and Theorem 5 gives the conclusion.

Finally we need the following Lemma.

Lemma 8 Suppose f : Xn → R where X ⊆ R. Then for x, y ∈ Xn and a, b ∈ X

Dk
a,bf (x)−Dk

a,bf (y) ≤
JLip (f) ‖x− y‖√

n
.

Proof. First assume k = 1 and for j ∈ {2, ..., n+ 1} define zj ∈ Xn by

zji =

{
xi if i < j
yi if i ≥ j ,

so that z1 = y and zn+1 = x. Then using Cauchy-Schwarz

D1
a,bf (x)−D1

a,bf (y) =

n∑
j=2

D1
a,bf

(
zj+1

)
−D1

a,bf
(
zj
)
=

n∑
j=2

D1
a,bD

j
xjyjf

(
zj
)

≤ JLip (f)

n

n∑
j=2

|xj − yj |

≤ JLip (f)√
n
‖x− y‖ .

If k 6= 1 let fπ be the function fπ (x) = f (πx), where π is the permutation
exchanging the first and the k-th argument, and apply the above to fπ.

Proof of Theorem 2. In this proof we use vw to denote the vector

vw = (v1w1, ..., vnwn) with v,w ∈ Rn.

Let Q be the left hand side of (2). Initially our proof parallels the standard
symmetrization argument: we pull the second expectation outside the supre-
mum

Q ≤ EXX′ sup
h∈H

[f (Xh)− f (X′h)] .

Since Xi and X ′i are iid, the last quantity does not change if we exchange Xi

and X ′i on an arbirary subset of indices i. If σ ∈ {0, 1}
n is such that σi is zero

on this set and one on its complement, we obtain

Q ≤ EXX′ sup
h∈H

[
f
(
σXh + (1− σ)X′h

)
− f

(
σX′h + (1− σ)Xh

)]
= EXX′Eσ sup

h∈H

[
f
(
σXh + (1− σ)X′h

)
− f

(
σX′h + (1− σ)Xh

)]
.
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In the last step we took the expectation over configurations σ chosen uniformly
from {0, 1}n. We now condition on the Xi and X ′i, which we temporarily replace
by lower case letters. For h ∈ H denote h := (xh,x′h) ∈ R2n and define the set
T ⊆ R2n by

T = {h : h ∈ H} .

Note that diam(T ) ≤
√
diam (H (x))2 + diam (H (x′))2 ≤

√
2n and thatG (T ) ≤

G (H (x)) +G (H (x′)).
Now consider the random process indexed by T

Yh (σ) = f
(
σxh + (1− σ)x′h

)
− f (σx′h + (1− σ)xh) .

Clearly EσYh (σ) = 0 for all h ∈ H. Now we want to apply Theorem 7 and
seek to prove, for fixed h, g ∈ H a bounded difference condition as in (5) on the
random variable Yh − Yg.
Let Z (σ) := Yh (σ)− Yg (σ) and fix a configuration σ ∈{0, 1}n. We define

vectors a,b, c,d ∈ [0, 1]n by

a = σxh + (1− σ)x′h
b = σxg + (1− σ)x′g
c = σx′h + (1− σ)xh
d = σx′g + (1− σ)xg.

Then Yh (σ) = f (a)− f (c), Yg (σ) = f (b)− f (d). Also note that

‖a− b‖2 + ‖c− d‖2 = ‖h− g‖2 . (6)

For any k ∈ {1, ..., n}

Dk
1,0Z (σ)

= Dk
h(xk),h(x′k)

f (a)−Dk
g(xk),g(x′k)

f (b) +Dk
h(xk),h(x′k)

f (c)−Dk
g(xk),g(x′k)

f (d)

= Dk
h(xk),h(x′k)

(f (a)− f (b)) +Dk
h(xk),h(x′k)

(f (c)− f (d))

+Dk
h(xk),h(x′k)

f (b)−Dk
g(xk),g(x′k)

f (b) +Dk
h(xk),h(x′k)

f (d)−Dk
g(xk),g(x′k)

f (d)

= Dk
h(xk),h(x′k)

(f (a)− f (b)) +Dk
h(xk),h(x′k)

(f (c)− f (d))

+Dk
h(xk),g(xk)

f (b)−Dk
h(x′k),g(x′k)

f (b) +Dk
h(xk),g(xk)

f (d)−Dk
h(x′k),g(x′k)

f (d) ,

where the identity Dk
y,y′f (x)−Dk

z,z′f (x) = Dk
y,zf (x)−Dk

y′,z′f (x) was used in
the last equality. Using Jensens inequality (which is responsible for the factor
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1/6) we get

1

6

(
Dk
1,0Z (σ)

)2
(7)

≤
(
Dk
h(xk),h(x′k)

(f (a)− f (b))
)2
+
(
Dk
h(xk),h(x′k)

(f (c)− f (d))
)2
+

+
(
Dk
h(xk),g(xk)

f (b)
)2
+
(
Dk
h(x′k),g(x′k)

f (b)
)2
+

+
(
Dk
h(xk),g(xk)

f (d)
)2
+
(
Dk
h(x′k),g(x′k)

f (d)
)2

≤ JLip (f)
2 ‖h− g‖2

n
+ 2MLip (f)

2
(
(h (xk)− g (xk))2 + (h (x′k)− g (x′k))

2
)
,

Where we bounded the first two terms using Lemma 8 and (6), and used the
definition of MLip for the remaining terms. Summing over k we get

n∑
k=1

(
Dk
1,0Z (σ)

)2 ≤ 3(JLip (f)2 + 2MLip (f)
2
)
× 2 ‖h− g‖2 .

Rescaling and applying Theorem 7 gives

Eσ sup
h∈H

Yh ≤
√
3
(
JLip (f)

2
+ 2MLip (f)

2
)
(18G (T ) + 11 diam (T ))

≤
√
JLip (f)

2
+ 2MLip (f)

2
(
32 (G (H (x)) +G (H (x′))) + 11

√
6n
)
.

We now remove the conditioning and return to the Xi-variables, to get

Q ≤ EXX′Eσ sup
h∈H

Yh

≤
√
JLip (f)

2
+ 2MLip (f)

2EXX′
(
32 (G (H (X)) +G (H (X′))) + 11

√
6n
)

=

√
JLip (f)

2
+ 2MLip (f)

2 (
64 EXG (H (X)) + 27

√
n
)
.

The second inequality is obtained by using the second inequality of Theorem 7.

3 Proof of the subgaussian-gaussian comparison,
Theorem 5

In this section we give a proof of Theorem 5. All the relevant ideas are taken
from Talagrand’s proof [7] of the majorizing measure theorem. The only con-
tribution here is to keep the constants small, by simultaneously considering the
subgaussian upper, and the Gaussian lower bound. First we need some standard
minorization results for Gaussian processes.
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Lemma 9 Let γ1, ..., γn be independent standard normal variables. Then

Emax
i
γi ≥

√
2 lnn− 2.

Proof. We may assume n > 7, the conclusion being immediate otherwise. We
have

Emax
i
γi ≥

∫ δ

0

Pr
{
max
i
γi > t

}
dt

=

∫ δ

0

(1− (1− Pr {γi > t})n) dt

≥
∫ δ

0

(
1−

(
1− 1√

2π

e−δ
2/2

δ + 1/δ

)n)
dt

≥ δ

(
1−

(
1− 1√

2π

e−δ
2/2

δ + 1/δ

)n)

≥ δ

(
1− exp

(
−n 1√

2π

e−δ
2/2

δ + 1/δ

))
.

In the third line we used a standard approximation and in the last line we used
1−x ≤ ex. Now set δ =

√
2 lnn− 1. Since n ≥ 8 we have 1 ≤

√
2 lnn− 1 so we

obtain

Emax
i
γi ≥

(√
2 lnn− 1

)(
1− exp

(
− 1√

2eπ

e
√
2 lnn

√
2 lnn

))

≥
√
2 lnn− 1−max

x>0
(x− 1) exp

(
− 1√

2eπ

ex

x

)
≥
√
2 lnn− 1−max

x>0
(x− 1) exp

(
− 1√

eπ

x2

2

)
Where we used ex/x ≥ x2/

√
2. From calculus we find for (x− 1) e−ax2/2 the

maximizer x = 1
2

(
1 +

√
1 + 4/a

)
. Resubstitution and using a = 1/

√
eπ we get

(x− 1) exp
(
− 1√

eπ

x2

2

)
≤ 0.526 ≤ 1,

so Emaxi γi ≥
√
2 lnn− 2.

The following is our version of Sudakov Minoration

Lemma 10 Let T = {t1, ..., tN} ⊆ Rd be finite with ‖tk − tl‖ ≥ r for k 6= l.
Then

G (T ) ≥ r
√
lnN −

√
2r
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Proof. Let T ′ = {e1, ..., eN} be an orthonormal basis for RN . Then

E (〈γ, ek〉 − 〈γ, el〉)2 ≤
2

r2
E (〈γ, tk〉 − 〈γ, tl〉)2 ,

whence by Slepian’s Lemma

G (T ) ≥ r√
2
G (T ′) ≥ r

√
lnn−

√
2r,

where Lemma 9 was used in the second inequality.

Lemma 11 Suppose tk ∈ T ⊆ Rd for 1 ≤ k ≤ N , that ‖tk − tl‖ ≥
√
8r for

t 6= l and that Ak ⊆ B (tk, r). Then

G

(⋃
l

Al

)
≥ r
√
2 lnN +min

k
G (Ak)− 4r.

Proof. For k ∈ {1, ..., N} define a random variable Yk = supt∈Ak
〈γ, t− tk〉.

The map z ∈ Rd 7→ supt∈Ak
〈z, t− tk〉 is Lipschitz with Lipschitz constant

supt∈Ak
‖t− tk‖ ≤ r. So by Gaussian concentration (Theorem 5.5 in [2]) for

every λ > 0

E exp (λ (EYk − Yk)) ≤ exp
(
λ2r2

2

)
.

So, from Jensen’s inequality,

exp

(
λEmax

k
(EYk − Yk)

)
≤
∑
k

E exp (λ (EYk − Yk)) ≤ N exp
(
λ2r2

2

)
.

Taking the logarithm and dividing by λ and substituting λ = r−1
√
2 lnN we

obtain

Emax
k
(EYk − Yk) ≤

λr2

2
+
1

λ
lnN = r

√
2 lnN. (8)

Since ‖tk − tl‖ ≥
√
8r, Sudakov Minoration (Lemma 10) gives

Emax
k
〈γ, tk〉 = G ({t1, ..., tN})) ≥ 2r

√
2 lnN − 4r. (9)

Thus

G

(⋃
k

Ak

)
= Emax

k
sup
t∈Ak

〈γ, t〉

= Emax
k
[〈γ, tk〉 − (EYk − Yk) + EYk]

≥ Emax
k
[〈γ, tk〉 − (EYk − Yk)] + min

l
G (Al)

≥ Emax
k
〈γ, tk〉 − Emax

k
(EYk − Yk) + min

l
G (Al)

≥
(
2r
√
2 lnN − 4r

)
− r
√
2 lnN +min

l
G (Al)

= r
√
2 lnN +min

k
G (Ak)− 3r.
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The second identity follows from the definition of the random variable Yk. The
first inequality follows from EYk = G (Ak) ≥ minlG (Al). The next is the
triangle inequality max (a− b) ≥ max a−max b and linearity of the expectation.
Finally we used the estimates (9) and (8).

Next we need a lemma exploiting subgaussian concentration

Lemma 12 : Suppose that X1, ..., Xn are random variables satisfying

Pr {Xi − EXi > t} ≤ e−t
2/2b2

for all 1 ≤ i ≤ n. Then

Emax
i
Xi ≤ max

k≤n

(
EXk + (9/8) b

√
2 ln k

)
+ 5b/2

Proof. We can assume b = 1. Let

Z = max
1≤i≤n

Xi − max
1≤k≤n

(
EXk + (9/8)

√
2 ln (2 + k)

)
Then for t > 0

Pr {Z > t} = Pr

{
∃i : Xi > max

1≤k≤n

(
EXk + (9/8)

√
2 ln (2 + k)

)
+ t

}
≤

∑
i

Pr

{
Xi > EXi +

√
2 ln (2 + i)

(9/8)2
+ t

}

≤
∑
i

exp


−
(√

2 ln (2 + i)
(9/8)2

+ t

)2
2
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Thus

EZi ≤
∫ ∞
0

Pr {Zi > t} dt

≤
∫ ∞
0

∑
i≥1

exp


−
(√

2 ln (2 + i)
(9/8)2

+ t

)2
2

 dt

=
∑
i≥1

∫ ∞
√
2 ln(2+i)(9/8)

2
exp

(
−t2
2

)
dt

≤
∑
i≥1

1√
4π ln (2 + i)

(9/8)2
exp

−
√
2 ln (2 + i)

(9/8)2
2

2


≤ 1√

4π ln (2 + 1)
(9/8)2

∑
i>1

(2 + i)
−(9/8)2

≤ 4

9
√
π ln 3

∫ ∞
0

(2 + s)
−(9/8)2

ds

≤ 0.8,

where we used a standard estimate for the tail of the normal distribution in the
third inequality. The result follows then by rescaling and since

√
ln (2 + k) ≤√

ln k +
√
ln 3 and 0.8 + (9/8)

√
2 ln 3 ≤ 5/2.

Recall the definition of the random variable

ZA,y0 := sup
y∈A

Xy −Xy0 ,

for any A ⊆ Rn and y0 ∈ Rn, and note that by zero mean EZA,y1 = EZA,y2
for any y1, y2 ∈ Rn. If A ⊆

⋃
kDk and yk ∈ Dk, then it follows from the

concentration property (4) and Lemma 12 that

EZA,y0 ≤ max
k

(
EZDk,yk + (9/8) sup

y∈A
‖y − y0‖

√
2 ln k

)
+ (5/2) sup

y∈A
‖y − y0‖ .

(10)

Proof of Theorem 5. Let δ := diam(Y ) > 0 and for t ∈ Rn and s > 0 use
B (t, s) to denote the scaled ball

B (t, s) = {y ∈ Rn : ‖y − t‖ ≤ δs} .

Throughout this proof we abbreviate r :=
√
8. Define for A ⊆ Rn and j ∈ Z

bj (A) := sup
t∈A

G
(
A ∩B

(
t, r−j−1

))
.
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For j ∈ Z let P (j) be the statement

∀A ⊆ Y,∀t0 ∈ A,(
A ⊆ B

(
t0, r

−j)) =⇒ EZA,y0 ≤ 9 (G (A) + bj (A)) +
7δr−j

1− r−1 .

We claim that this statement is true for all j ∈ N0.
Since Y is finite, there exists jsep such that for all j ≥ jsep,A ⊆ Y and

t0 ∈ A the inclusion
(
A ⊆ B

(
t0, r

−j)) implies that A = {t0}, so that P (j)
holds, because the LHS in the inequality is zero. We can thus prove P (j) for
smaller values of j by downward induction in j. To this end we assume P (j + 1)
to hold and set about to prove P (j).
Let A ⊆ Y , t0 ∈ A and assume that A ⊆ B

(
t0, r

−j).
Now we construct for 1 ≤ k ≤ p the points tk ∈ A, the partition Dk

and the sets Ak ⊆ Dk just as in Talagrand’s paper: t1 is chosen such that
G
(
A ∩B

(
t1, r

−j−2)) is maximal, A1 = A ∩ B
(
t1, r

−j−2) and D1 = A ∩
B
(
t1, r

−j−1). Having chosen tl, Al, and Dl for l ∈ {1, ..., k − 1} we let Hk =⋃
1≤l≤k−1Dk. If A ⊆ Hk we stop, otherwise we choose tk ∈ A\Hk such

that G
(
A ∩B

(
tk, r

−j−2)) is maximal, Ak = A ∩ B
(
tk, r

−j−2) and Dk =

(A\Hk) ∩B
(
tk, r

−j−1).
The relevant properties of this construction are

A ⊆ B
(
t0, r

−j) (11)

A =
⋃
k

Dk (12)

Dk ⊆ B
(
tk, r

−j−1) (13)

Ak ⊆ B
(
tk, r

−j−2) (14)

‖tk − tl‖ ≥ δr−j−1 for j 6= l (15)

G (Ak+1) ≤ G (Ak) (16)

bj+1 (Dk) ≤ G (Ak) (17)

G (Dk) ≤ bj (A) . (18)

Of these all but the last two are immediate. For any t ∈ Dk

G
(
Dk ∩B

(
t, r−j−2

))
≤ G

(
(A\Hk) ∩B

(
t, r−j−2

))
≤ max

t∈(A\Hk)
G
(
(A\Hk) ∩B

(
t, r−j−2

))
≤ G (Ak) .

This gives (17). Property (18) follows from Dk ⊆ B
(
tk, r

−j−1), so G (Dk) ≤
bj (A).
We now use inequality (10) and properties (11) and (12) above to get

EZA,t0 ≤ max
k

(
(9/8) δr−j

√
2 ln k + EZDk,tk

)
+ (5/2) δr−j (19)

12



Since Dk ⊆ B
(
tk, r

−(j+1)) by (13) we can use P (j + 1) with Dk and tk. This
reads

EZDk,tk ≤ 9 (G (Dk) + bj+1 (Dk)) +
7δr−j−1

1− r−1

≤ 9 (G (Ak) + bj (A)) +
(5/2) δr−j−1

1− r−1 +
(9/2) δr−j−1

1− r−1 ,

where we used the properties (17) and (18) in the second inequality. Note that

r−j−1

1− r−1 + r
−j =

r−j

1− r−1 , (20)

so substitution in (19) gives

EZA,t0

≤ max
k

(
(9/8) δr−j

√
2 ln k + 9 (G (Ak) + bj (A))

)
+
(5/2) δr−j

1− r−1 +
(9/2) δr−j−1

1− r−1

= (9/8) δr−j
√
2 ln k∗ + 9 (G (Ak∗) + bj (A)) +

(5/2) δr−j

1− r−1 +
(9/2) δr−j−1

1− r−1 , (21)

where we passed to a maximizer k∗. By (16) the G (Ak) are nonincreasing so
that G (Ak∗) = mink≤k∗ G (Ak). By properties (14) and (15) and r =

√
8 we

can use the minoration Lemma 11 with δr−j−2 and k∗ in place of r and N to
obtain

G (A) ≥ G

 ⋃
k≤k∗

Ak

 ≥ δr−j−2√2 ln k∗ +G (Ak∗)− 4δr−j−2
or

G (Ak∗) ≤ G (A)− δr−j−2
√
2 ln k∗ +

1

2
δr−j .

Since (9/8) r−j − 9r−j−2 = 0, substitution in (21) above and using (20) gives
that

EZA,t0 ≤ 9 (G (A) + bj (A)) +
7δr−j

1− r−1 ,

which is the conclusion of P (j) and completes the induction.
Since Y ⊆ B (y0, 1) we have that y0 and j = 0 satisfy the induction hypoth-

esis and using b0 (Y ) ≤ G (Y ) we get

E
[
sup
y∈Y

Xy

]
= EZY,y0 ≤ 18G (Y ) +

7δ

1− r−1

≤ 18G (Y ) + 11 diam (Y ) .
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