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Abstract

An information theoretical interpretation of majorizing and minorizing
measures is given. The expression logarithmic in the reciprocal of the
measure of a ball is replaced by the number of bits needed to achieve
desired precision in some convergent code. We also give a local version of
the majorizing bound.

1 Introduction

Consider a compact metric space (T, d) of unit diameter and a random process
Xt indexed by T such that

Pr {|Xt1 −Xt2 | > s} ≤ 2 exp

(
−s2

d2 (t1, t2)

)
for t1, t2 ∈ T and s > 0. (1)

The boundedness properties of such sub-gaussian processes have been intensively
studied. Let t0 be a fixed member of T . Then the metric entropy inequality
([4], [8])

E sup
t∈T
|Xt −Xt0 | ≤ C

∫ 1

0

√
N (T, d, ε)dε (2)

holds, where N (T, d, ε) is the smallest number of open balls of radius ε needed
to cover T and C is a universal constant.

Now suppose that there is a probability measure m defined on T . Then we
have the majorizing measure bound ([4],[6],[7])

E sup
t∈T
|Xt −Xt0 | ≤ C ′ sup

t∈T

∫ 1

0

√
ln

1

m (B (t, ε))
dε, (3)

where B (t, ε) denotes the open ball of radius ε centered at t and C ′ is another
universal constant. This is an improvement, since for an appropriate choice of
the measure m the inequality (2) can be recovered from (3) up to a constant.
Michel Talagrand also showed that for Gaussian processes it is possible to choose
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m so as to reverse the above inequality, thus providing a complete characteri-
zation of boundedness in terms of these majorizing measures ([4], [5],[7]).

Several alternatives equivalent to the right hand side in (3) have been de-
rived, ranging from sums involving nested partitions ([4] and [6]) to approximat-
ing sets [6] and various kinds of trees (see the appendix of [7]). The construction
of these alternatives was largely motivated by specific analytical problems, such
as the proofs of upper or lower bounds, for which one or another formulation
is more convenient. The different formulations can also be understood as pro-
viding different perspectives on the interpretation of the right hand side of (3),
which, according to Talagrand, measures the "size" of the space T , once the
infimum over all probability measures m has been taken.
Such an interpretation is the subject of the present paper, which relates the

boundedness of the process (Xt)t∈T to the possibility of giving effi cient names
to the members of T .
The expression under the square-root in the integrand in (3) already suggests

an information theoretical interpretation, intuitively something like "the number
of bits needed to describe t with precision ε". In the following this intuition will
be made precise.

A code for T assigns to every t ∈ T a codeword c (t), which is a finite
or infinite sequence of characters from a finite alphabet α. A simple example
is T = [0, 1], when every t ∈ T is encoded by binary expansion. Since the
cardinality of T can be very large of infinite, most codewords will be very long
or infinite, and therefore diffi cult or impossible to memorize or communicate.
We are therefore compelled to tolerate some ambiguity which arises from the
truncation of codewords. Given a code c, a point t ∈ T and a truncation length
k ∈ N, the truncated codeword pk (c (t)) is defined as the string composed of
the leading k characters of c (t), if c (t) is longer that k, and pk (c (t)) = c (t)
otherwise.
In the setting of metric spaces the ambiguity caused by truncation can be

quantified as the diameter of the set of points whose truncated codewords are
identical.

Dk (c, t) = sup {d (t′, t′′) : pk (c (t′)) = pk (c (t′′)) = pk (c (t))} .

The code is called convergent if Dk (c, t)→ 0 as k →∞ for every t ∈ T . For a
convergent code and t ∈ T , ε > 0 we define

len (t, ε) = min {k : Dk (c, t) < ε} .

In Section 2 these definitions will be repeated in a more formal setting. In
the meantime, to gain some intuition, let us suppose that the code is binary
and that we are to receive the codeword of some t ∈ T bit after bit, in the
style of a guessing game. Initially the set of possible candidates for t is all
of T . Subsequently every bit we receive corresponds to the answer of a yes-
no question, which separates the set of previously possible candidates into an
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impossible set and a set of remaining possible candidates for t. After k bits we
have received the string pk (c (t)) and the set of possible candidates has diameter
Dk (c, t). If the code is convergent this diameter will become arbitrarily small in
a finite time, and len (c, t, ε) is the number of bits communicated until the set of
remaining candidates has shrunk to a diameter smaller than ε. So len (c, t, ε) is a
scale sensitive ("ε") and local ( "t") measure of descriptive complexity incurred
through the use of the code c.

The following is the principal contribution of this paper, stated here for
binary codes. More general statements are given in Theorems 8 and 14.

Theorem 1 Let (T, d) be a compact metric space of unit diameter.
(i) For every convergent binary code c for T there is a probability measure

m on T such that for every t ∈ T.∫ 1

0

√
ln

1

m (B (t, ε))
dε ≤ 2

∫ 1

0

√
len (c, t, ε)dε+ 2.

(ii) For every probability measure m on T there is a convergent binary code
c : T → {0, 1}N such that for every t ∈ T

√
ln 2

∫ 1

0

√
len (c, t, ε)dε ≤ 93

∫ 1

0

√
ln

1

m (B (t, ε))
dε+ 69.

The (sample-) boundedness of subgaussian processes can therefore be char-
acterized in terms of the convergence properties of codes for the index set. Such
follows from the majorizing measure bound (3) and the minorizing inequality
for Gaussian processes [4][5].
The integral over scales can be equivalently (up to constants) expressed as

a weighted sum over the questions asked and answered in the above guessing
game.

Theorem 2 Let (T, d) be a compact metric space of unit diameter and c any
convergent code for T . Then for every t ∈ T

1 + 2−3/2
∞∑
k=1

Dk (c, t)√
k

≤
∫ 1

0

√
len (c, t, ε)dε ≤ 1 + 2−1

∞∑
k=1

Dk (c, t)√
k

.

A consequence of this formula and (3) is, that boundedness of a subgaussian
processes is ensured, whenever there exists a code which "comes to the point"
as quickly as O (k−p) with p > 1/2, for every point t ∈ T .

Observe however that the above inequalities are uniform, in the sense that
they hold for every t ∈ T , not just for the comparison of the suprema. The
majorizing bound (3) can be extended to hold in a similar way. The following
result is stated here in terms of binary codes (but in view of Theorem 1 it could
have been stated equivalently in terms of probability measures). We also state
the result for finite T and refer to [4] for the infinite case and the issues of
measurability which arise.
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Theorem 3 Let (T, d) be a finite metric space of unit diameter. Given the
sub-gaussian condition (1), a fixed member t0 of T , a convergent binary code c
for T and δ ∈ (0, 1), we have with probability at least 1− δ that for all t ∈ T

|Xt −Xt0 | ≤ 4
√

ln 2

∫ 1

0

√
len (c, t, ε)dε+ 4

√
ln

2

δ
.

Replacing the code by a probability measure, as indicated by Theorem 1,
using integration by parts and passing to suprema we can recover the classical
inequality (3) up to a constant. Observe however that the right hand side of the
majorizing measure bound (3) only gives global information, while Theorem 3
can be used to motivate and justify the selection of some specific t ∈ T , because
the values of the integral can be taken into consideration in the evaluation of an
optimization candidate. This makes contact to work which applies majorizing
measures to statistical learning theory [1].

The author is unaware of other work making explicit the interconnection
between majorizing (or minorizing) measures on one side and the encoding of
metric spaces on the other side. This is surprising, because of the suggestive
presence of the logarithm in the right hand side of (3). Also, majorizing measures
are intimately connected with nested partitions, as shown in [6], while on the
other hand certain systems of nested partitions are equivalent to codes. That
the majorizing bound holds as in Theorem 3, and not just for a comparison of
the suprema, is implicit in the proofs of, but never stated in [4],[6] and [7]. It is
stated in [1] under more specialized circumstances.

2 Codes in metric spaces

In this section we introduce definitions and some facts pertaining to the encoding
of metric spaces.
Let α be a finite set, called the alphabet. Its cardinality is denoted with |α|.

A finite string s over α is a finite sequence

s = (s (1) , ..., s (len (s))) ∈ αlen(s).

The length len (s) is a property of the string s. The set α∗ of finite strings
contains strings of all length. The string of length zero is called the empty
string and denoted with 0.
An infinite string over α is an infinite sequence

s = (s (k))k∈N ∈ α
N.

With α∗∗ we denote the set of all strings, finite or infinite, α∗∗ = α∗ ∪ αN. If
s ∈ αN we write len (s) = ∞. If s1 ∈ α∗ and s2 ∈ α∗∗ we use s1 ◦ s2 to denote
their concatenation

(s1 ◦ s2) (k) =

{
s1 (k) if 1 ≤ k ≤ len (s1)

s2 (k − len (s1)) if len (s1) < k ≤ len (s1) + len (s2)
.
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If s = s1 ◦ s2 then s1 is called a prefix of s, and s is called an extension of s1.
The set of extensions of a string s is s◦α∗∗ = {s ◦ s′ : s′ ∈ α∗∗}, the set of finite
extensions is s ◦ α∗ = {s ◦ s′ : s′ ∈ α∗}. For k ∈ N0, the truncation of s at k is
the finite string pk (s) defined as

pk (s) =

 0 if k = 0
(s (1) , ..., s (k)) if 1 ≤ k < len (s)

s if len (s) ≤ k

A code for a set T over an alphabet α is a mapping c : T → α∗∗ from T to
the set α∗∗ of strings over α. The range c (T ) of the function c is called the set
of codewords, and for t ∈ T the string c (t) is the codeword representing t. The
code is called finite if c (T ) ⊆ α∗. We use c−1 to denote the (set-valued) inverse
function. If s ∈ α∗ is any finite string then

ĉ (s) := c−1 (s ◦ α∗∗) ⊆ T

is the set of points of T which correspond to possible extensions of s, so ĉ (s)
is the subset of T , which is effectively described by the message string s. If s1
is a prefix of s2 ∈ α∗ then ĉ (s1) ⊇ ĉ (s2). Also we have ĉ (0) = T . Of course,
depending on s, the set ĉ (s) may well be empty. The vocabulary V (c) is the
set of finite prefixes actually used by the code, that is

V (c) = {v ∈ α∗ : ĉ (s) 6= ∅} ,

so v is in the vocabulary if and only if v is finite and extends to a codeword.
The vocabulary consists of finite strings which describe nonempty subsets of T ,
meaningful messages as we might say. Since ĉ (s) 6= ∅ for every s ∈ V (c), there
is a prototype function πc : V (c)→ T such that π (s) ∈ ĉ (s) for every s ∈ V (c).

If there is a sigma algebra Σ defined on T , we say that c is Σ-measurable if
∀k ∈ N, a ∈ α

{t ∈ T : len (c (t)) ≥ k, (c (t)) (k) = a} ∈ Σ.

Note that this implies than ĉ (s) ∈ Σ, for all s ∈ α∗ and that len (c (.)) is a
Σ-measurable function.

To say that a finite code is instantaneous means that means that for any
t1, t2 ∈ T , t1 6= t2 we have c (t1) /∈ c (t2) ◦ α∗. So no codeword can be a
prefix to any other, and every codeword can be uniquely decoded as soon as
its last character has been received, hence the name. Instantaneous codes are
sometimes also called prefix-free. A finite code is instantaneous if and only if
ĉ (c (t)) = {t} for every t ∈ T .

Theorem 4 (Kraft inequality [3]) For any instantaneous code c : T → α∗

we have ∑
t∈T
|α|−len(c(t)) ≤ 1,
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where |α| denotes the cardinality of the alphabet α.
Conversely, if l : T → N satisfies

∑
t∈T |α|

−l(t) ≤ 1 then there exists an
instantaneous code c : T → α∗ such that l (t) = len (c (t)) .

Suppose now that (T, d) is a metric space. We will always assume that any
code c : T → α∗∗ is Borel-measurable. For A ⊆ T we use D (A) to denote the
diameter of A, so D (A) = sup {d (x, y) : x, y ∈ A}.

Fix a code c : T → α∗∗. If a string v is in the vocabulary, v ∈ V (c), the
number D (ĉ (v)) can be interpreted as the ambiguity associated with v. For
t ∈ T and k ∈ N0 we use the shorthand

Dk (c, t) = D (ĉ (pk (c (t)))) ,

for the ambiguity incurred by the truncation of c (t) to length at most k. The
sequence Dk (c, t) is nonincreasing. A code is convergent if limk→∞Dk (c, t) = 0
for every t ∈ T . A finite code is convergent if and only if D (ĉ (c (t))) = 0, which
happens if and only if ĉ (c (t)) = {t} which happens if and only if the code is
instantaneous.

For any convergent code c, t ∈ T and ε > 0 there exists K such that
Dk (c, t) < ε for all k ≥ K. We can therefore define a function len (c, ., .) :
T × (0, 1]→ N0 by

len (c, t, ε) = min {k : Dk (c, t) < ε}

and a two-argument function c : T × (0, 1]→ V (c) by

c (t, ε) = plen(c,t,ε) (c (t)) .

So c (t, ε) is the minimum length prefix of c (t) which has an ambiguity bounded
by ε, and len (c, t, ε) is the length of this prefix. c (t, ε) is the code of t truncated
to precision ε.

If the ambiguity of any v ∈ V (c) string is smaller than ε > 0, if D (ĉ (v)) < ε,
we can extend this definition to v by setting

len (c, v, ε) = min {k : D (ĉ (pk (v))) < ε}
c (v, ε) = plen(c,v,ε) (v) .

Observe also that these definitions imply a projection formula: If t ∈ T , v ∈
V (c), D (ĉ (v)) < ε ≤ η then

c (t, η) = c (c (t, ε) , η) and c (v, η) = c (c (v, ε) , η) (4)

For fixed ε the range of the function cε : t ∈ T 7→ c (t, ε) ∈ V (c) is denoted by
Sε (c). This can be regarded as a cross-section of the code at metric resolution
ε.

Convergent codes, when truncated at any specified precision, produce in-
stantaneous codes on these cross-sections.
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Proposition 5 Fix a convergent c : T → α∗∗ and ε ≥ 0.
(i) The identity map on Sε (c) is an instantaneous code.
(ii) ∑

v∈Sε(c)

|α|−len(v) ≤ 1. (5)

(iii) If 0 ≤ ε ≤ η the map v ∈ Sε (c) 7→ c (v, η) maps Sε onto Sη.

Proof. Let t, t′ ∈ T and assume that c (t, ε) = c (t′, ε) ◦ s for some s ∈ α∗.
Then c (t) ∈ c (t, ε) ◦ α∗ = c (t′, ε) ◦ s ◦ α∗ ⊆ c (t′, ε) ◦ α∗ and D (c (t′, ε)) ≤ ε.
By the optimality of c (t, ε) we therefore have len (c (t, ε)) ≤ len (c (t′, ε)). Thus
len (c (t′, ε)) + len (s) = len (c (t, ε)) ≤ len (c (t′, ε)) so that len (s) = 0 and
therefore c (t, ε) = c (t′, ε).
We have shown the following: It t, t′ ∈ T then either c (t, ε) = c (t′, ε) or

neither of c (t, ε) and c (t′, ε) is a prefix of the other one. This implies (i) and, by
the Kraft inequality (Theorem 4) it implies (ii). (iii) follows from the projection
formula (4).

To every such cross-section corresponds a suitably fine partition of T . The
following facts, which we will not use, are easy to prove.

• The collection of subsets

Pε (c) = {ĉ (v) : v ∈ Sε (c)}

is a partition of T .

• Each member of Pε (c) has diameter less than ε.

• If ε ≤ η then Pε (c) is a refinement of Pη (c).

3 From codes to random processes

We proof the local majorizing bound (Theorem 3) in the case of finite T and
a finite code c. The proof is essentially a union bound over the cross-sections
S2−l (c) of the vocabulary at exponentially decreasing scales. It is easier to derive
this result from codes than from measures, where an intermediate construction
(partitions or ultrametric) is required.

Theorem 6 Suppose that (T, d) is a finite metric space of unit diameter, c :
T → α∗ is an instantaneous code, and Xt is a random process indexed by T
such that

Pr {|Xt −Xt′ | > s} ≤ K exp

(
−
(

s

d (t, t′)

)p)
(6)
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for all t ≥ 0, t, t′ ∈ T and some K ≥ 1. Let t0 be an arbitrary element of T .
Then for δ ∈ (0, 1) with probability at least 1− δ we have that for every t ∈ T

|Xt −Xt0 | ≤
∑
l>0

2−l+1
(

ln |α| len
(
c, t, 2−l

)
+ ln

2lK

δ

)1/p
.

Proof. Recall the prototype function π : V → T which gives an element of
ĉ (v) for every v ∈ V. We now modify it to make π (0) = t0, which is possible,
since ĉ (0) = T . Observe that for any t ∈ T we have π (c (t, 1)) = π (0) = t0,
while finiteness of T implies that for suffi ciently large l all t′ different from t are
further than 2−l from t, so that c

(
t, 2−l

)
= c (t) and π

(
c
(
t, 2−l

))
= t. This

implies the chaining inequality: For every t ∈ T

|Xt −Xt0 | ≤
∑
l>0

∣∣Xπ(c(t,2−l)) −Xπ(c(t,2−l+1))

∣∣ .
If for l ∈ N we have v ∈ S2−l , then we denote v̂ := c

(
v, 2−(l−1)

)
∈ S2−(l−1) . The

string v̂ can be regarded as the parent of v, with resolution coarser by a factor
of 2. Both π (v) and π (v̂) are members of ĉ (v̂), which has diameter bounded
by 2−(l−1), so

d (π (v) , π (v̂)) ≤ 2−(l−1), for all v ∈ S2−l . (7)

For l ≥ 0 we also define a function ξl : S2−l → R+ as follows. For v ∈ S2−l
we set

ξl (v) = 2−l+1
(

ln |α| len (v) + ln

(
2lK

δ

))1/p
.

We have to show that

Pr

{
∃t ∈ T : |Xt −Xt0 | −

∑
l>0

ξl
(
c
(
t, 2−l

))
> 0

}
≤ δ.

Denote the left side of this inequality with P . By the chaining inequality

P ≤ Pr

{
∃t ∈ T :

∑
l>0

(∣∣Xπ(c(t,2−l)) −Xπ(c(t,2−l+1))

∣∣− ξl (c (t, 2−l))) > 0

}
.

If the sum is positive, at least one of the terms has to be positive, so

P ≤ Pr
{
∃t ∈ T, ∃l > 0 :

∣∣Xπ(c(t,2−l)) −Xπ(c(t,2−l+1))

∣∣ > ξl
(
c
(
t, 2−l

))}
= Pr

{
∃l > 0,∃v ∈ S2−l :

∣∣Xπ(v) −Xπ(v̂)

∣∣ > ξl (v)
}

≤
∑
l>0

∑
v∈S

2−l

Pr
{∣∣Xπ(v) −Xπ(v̂)

∣∣ > ξl (v)
}
.

By (7), for v ∈ S2−l , we have d (π (v) , π (v̂)) < 2−(l−1). Using (6) we obtain

P ≤
∑
l>0

∑
v∈S

2−l

K exp
(
−
(
2l−1ξl (v)

)p)
= δ

∑
l>0

1

2l

∑
v∈S

2−l

|α|−len(v) ,
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where we have used the definition of ξl (v). But by the Kraft inequality, (5), the
inner sum is at most one, so P ≤ δ

∑
l>0 2−l = δ, which completes the proof.

We will make repeated use of the following inequalities.

Lemma 7 Let f : (0, 1] → R+ be measurable and nonincreasing and r > 1.
Then

(r − 1)

∞∑
k=1

r−kf
(
r−k+1

)
≤
∫ 1

0

f (ε) dε ≤ (r − 1)

∞∑
k=1

r−kf
(
r−k

)
.

Convergence of the right hand sum implies existence of the integral, which in
turn implies convergence of the left hand sum.

Proof. We sum, over k ∈ N0, the inequalities

(
r−k+1 − r−k

)
f
(
r−k+1

)
≤
∫ r−k+1

r−k
f (ε) dε ≤

(
r−k+1 − r−k

)
f
(
r−k

)
.

Proof of Theorem 3. We use Theorem 6 and Lemma 7.

∑
l>0

2−l+1
√

(ln 2) len (t, 2−l) + ln
2l+1

δ

≤ 4
√

ln 2

(∑
l>1

2−l
√
len (t, 2−l+1)

)
+

(∑
l>0

2−l+1
√

(l + 1)

)√
ln

2

δ

≤ 4
√

ln 2

∫ 1

0

√
len (t, ε)dε+ 4

√
ln

2

δ
.

4 From codes to probability measures

Given an instantaneous code, the construction of an appropriate probability
measure is a rather direct consequence of the Kraft inequality.

Theorem 8 Let (T, d) be a compact metric space of unit diameter and let p ≥ 1.
Then for any convergent code c : T → α∗∗ there exists a probability measure m
of T such that for all t ∈ T∫ 1

0

(
ln

1

m (B (t, ε))

)1/p
dε ≤ 2 (ln |α|)1/p

∫ 1

0

(len (c, t, ε))
1/p

dε+ 2.
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Proof. Define a measure m′ on T by

m′ =
∑
l>0

2−l
∑

v∈S
2−l

|α|−len(v) δπ(v),

where δπ(v) is the unit mass (Dirac measure) concentrated at π (v), the repre-
sentative of v in ĉ (v). By the Kraft inequality (5) we have m′ (T ) ≤ 1, so there
is a probability measure m ≥ m′. Now for any l ∈ N and any t ∈ T we have

m′
(
ĉ
(
c
(
t, 2−l

)))
=

∑
t′∈ĉ(c(t,2−l))

∑
k>0

2−k
∑

v∈S
2−k

|α|−len(v) δπ(v) (t′)

≥ 2−l
∑

t′∈ĉ(c(t,2−l))

∑
v∈S

2−l

|α|−len(v) δπ(v) (t′)

= 2−l |α|−len(c(t,2−l)) .

Also ĉ
(
c
(
t, 2−l

))
⊆ B

(
t, 2−l

)
, so

ln
1

m (B (t, 2−l))
≤ ln

1

m (ĉ (c (t, 2−l)))
≤ ln

1

m′ (ĉ (c (t, 2−l)))

≤ (ln |α|) len
(
t, 2−l

)
+ l ln 2.

It follows that for any t ∈ T , using ln 2 ≤ 1 and l1/p ≤ l and Lemma 7,∫ 1

0

(
ln

1

m (B (t, ε))

)1/p
dε ≤

∑
l>0

2−l
(

ln
1

m (B (t, 2−l))

)1/p
≤

∑
l>0

2−l
(
(ln |α|) len

(
t, 2−l

)
+ l
)1/p

≤ 2 (ln |α|)1/p
∑
l>0

2−l−1
(
len
(
t, 2−l

))1/p
+
∑
l>0

2−ll1/p

≤ 2 (ln |α|)1/p
∫ 1

0

(len (t, ε))
1/p

dε+ 2.

5 An alternative formula

The result which we now prove includes Theorem 2 as the special case p = 2.

Theorem 9 Let (T, d) be a finite metric space of unit diameter and c : T → α∗

an instantaneous code and p ≥ 1. Then for every t ∈ T

1+
21/p−1

p

∞∑
k=1

k1/p−1Dk (c, t) ≤
∫ 1

0

(len (c, t, ε))
1/p

dε ≤ 1+
1

p

∞∑
k=1

k1/p−1Dk (c, t) .
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Proof. Let λ denote the Lebesgue measure. We have∫ 1

0

(len (ε, t))
1/p

dε =

∞∑
k=1

k1/pλ ({ε ≤ 1 : len (ε, t) = k}) .

The set {ε ≤ 1 : len (ε, t) = k} is an interval. Now len (ε, t) = k if and only if
Dk (c, t) < ε ≤ Dk−1 (c, t), so

λ ({ε ≤ 1 : len (ε, t) = k}) = Dk−1 (c, t)−Dk (c, t)

and a summation by parts gives∫ 1

0

(len (ε, t))
1/p

dε =
∞∑
k=1

k1/p (Dk−1 (c, t)−Dk (c, t))

= 1 +

∞∑
k=1

(
(k + 1)

1/p − k1/p
)
Dk (c, t) . (8)

Using concavity and smoothness of the function s 7→ s1/p we get for k ≥ 1

21/p−1

p
k1/p−1 ≤ 1

p

(
k + 1

k

)1/p−1
k1/p−1 =

1

p
(k + 1)

1/p−1

≤ (k + 1)
1/p − k1/p

≤ 1

p
k1/p−1 =

1

p
k−1/q.

The result follows if we substitute these inequalities in (8).

6 From probability measures to codes

In [6] Michel Talagrand proves the following result:

Theorem 10 Let m be a probability measure on T . There exists a sequence of
nested partitions (Ak)k≥0 of T such that |A0| = 1, |Ak| ≤ 22

k

and

sup
t∈T

∑
k≥0

2k/pD (Ak (t)) ≤ C (p) sup
t∈T

∫ 1

0

(
ln

1

m (B (t, ε))

)1/p
dε,

where C (p) is a constant depending on p only.

We will use this result in a slightly modified form:

11



Theorem 11 Let m be a probability measure on T . There exists a sequence of
partitions (Ak)k≥0 of T such that |A0| = 1, |Ak| ≤ 22

k

and

∀t ∈ T ,
∑
k≥0

2k/pD (Ak (t)) ≤ C1 (p)

∫ 1

0

(
ln

1

m (B (t, ε))

)1/p
dε+ C2 (p) ,

where

C1 (p) =
16

1− 2−1/p

(
1

ln 2

)1/p
C2 (p) =

4

1− 2−1/p

∑
l∈N0

2−l (l + 2)
1/p

.

The only strengthening here is that we require the inequality to be valid for
every t ∈ T , not just for the suprema. But this is already implied by Talagrands
proof in [6], which we essentially reproduce in the following. We do so without
any claim of originality, for the benefit to the reader, to demonstrate that the
strengthening doesn’t cause any diffi culties, and also to make the constants
accessible.
On the other hand we weaken the result, because we do not require the

partitions to be nested. In view of the equivalences demonstrated in this pa-
per this shows that the requirement of nested partitions in [6] is superfluous:
If the partitions are not nested, but as in Theorem 11 then by the proof of
Theorem 14 we can construct an appropriate code, Theorem 8 gives us a corre-
sponding probability measure, and Talagrands Theorem 10 produces the nested
partitions.

Lemma 12 If (T, d) is a compact metric space with probability measure m,
ε > 0 and A ⊆ T , then

N (A, 2ε) inf
t∈A

m (B (t, ε)) ≤ 1,

where N (A, 2ε) is the smallest number of open balls of radius 2ε needed to cover
A.

Proof. Let M be the 2ε-packing number

M = sup {n ∈ N : ∃P ⊆ A, |P | = n, ∀x, y ∈ P, d (x, y) ≥ 2ε} .

By compactness the set on the right hand side is bounded, so the supremum
is attained for some P ∗ ⊆ A. If z ∈ A then there exists x ∈ P ∗ such that
d (x, z) < 2ε, otherwise we could enlarge P ∗ with z, contradicting its maximality.
It follows that A can be covered by M open balls of radius 2ε centered in P , so
that N (A, 2ε) ≤ M . On the other hand, the open balls centered at the points
in P ∗ with radius ε are disjoint, whence

1 ≥ m
( ⋃
t∈P∗

B (t, ε)

)
=
∑
x∈P∗

m (B (t, ε)) ≥M inf
t∈A

m (B (t, ε)) .

12



Proof of Theorem 11. For any t ∈ T and k ∈ N the set of integers l such
that m

(
B
(
t, 2−l

))
≥ 2l+12−2

k

is bounded and contains 0, so that a function
gk : T → N0 is well defined by

gk (t) = max
{
l ∈ Z : m

(
B
(
t, 2−l

))
≥ 2l+12−2

k
}
,

and
{
g−1k ({l})

}
l∈N0

is a partition of T . Every member t ∈ g−1k ({l}) satisfies
the two inequalities

m
(
B
(
t, 2−l

))
≥ 2l+12−2

k

(9)

m
(
B
(
t, 2−l−1

))
< 2l+22−2

k

. (10)

By (9) and Lemma 12 we have

N
(
g−1k ({l}) , 2× 2−l

)
≤ 2−l−122

k

,

so that g−1k ({l}) has a disjoint partition Akl, satisfying |Akl| ≤ 2−l−122
k

and
D (A) ≤ 2−l+2 for all A ∈ Akl. Then Ak =

⋃
l∈N0 Akl is a disjoint partition of

T , of cardinality
|Ak| ≤ 22

k ∑
l∈N0

2−l−1 = 22
k

.

For any k ∈ N and t ∈ T we use Ak (t) to denote the unique member of Ak
containing t.
Now fix t ∈ T . We may thus assumem (B (t, ε)) > 0 for every ε > 0, since the

inequality to be proved is otherwise trivial. Observe that D (Ak (t)) ≤ 2−gk(t)+2,
so that

∞∑
k=1

D (Ak (t)) 2
k
p ≤ 4

∞∑
k=1

2
k
p 2−gk(t) (11)

Now consider for l ∈ N0 and t ∈ T the set K (t, l) = {k ∈ N : gk (t) = l} and
observe that K (t, l) may be empty, but that it is always bounded above since
m
(
B
(
t, 2−l−1

))
> 0. We can therefore define

k∗ (t, l) =

{
0 if K (t, l) = ∅

maxK (t, l) if K (t, l) 6= ∅ .

With these definitions the summation of a geometric series gives

∞∑
k=1

2
k
p 2−gk(t) =

∑
l:K(t,l)6=∅

2−l
∑

k∈K(t,l)

2
k
p ≤ 1

1− 2−1/p

∑
l:K(t,l)6=∅

2−l2
k∗(t,l)
p . (12)

But if K (t, l) is nonempty, then, since gk∗(t,l) (t) = l, we get from (10) that

2k
∗(t,l) − (l + 2) ≤ max

{
0, 2k

∗(t,l) − l − 2
}
≤ 1

ln 2
ln

1

m (B (t, 2−l−1))
,

13



which implies that∑
l:K(t,l)6=∅

2−l2
k∗(t,l)
p ≤

∑
l∈N0

2−l
(

1

ln 2
ln

1

m (B (t, 2−l−1))
+ (l + 2)

)1/p

≤
(

1

ln 2

)1/p ∑
l∈N0

2−l
(

ln
1

m (B (t, 2−l−1))

)1/p
+
∑
l∈N0

2−l (l + 2)
1/p

. (13)

Finally the estimates of Lemma 7 give∑
l∈N0

2−l
(

ln
1

m (B (t, 2−l−1))

)1/p
≤ 4

∫ 1

0

(
ln

1

m (B (t, ε))

)1/p
dε. (14)

The result follows from combining the inequalities, (11), (12), (13) and (14).
We will construct a code from a probability measure by concatenating in-

stantaneous codes for each partition and use the following Lemma to compare
the representation of Theorem 9 to the sum in Theorem 11.

Lemma 13 Let k ∈ N and p ≥ 1. Then

2k−1∑
l=2k−1

l1/p−1 ≤ 2
k−1
p p.

Proof. We have
2k−1∑
l=2k−1

l1/p−1 ≤
∫ 2k−1

2k−1−1
x1/p−1dx = p

((
2k − 1

)1/p − (2k−1 − 1
)1/p)

.

Now for a, b ≥ 0 we have (a+ b)
1/p ≤ a1/p + b1/p, so(

2k − 1
)1/p−(2k−1 − 1

)1/p
=
((

2k−1
)

+
(
2k−1 − 1

))1/p−(2k−1 − 1
)1/p ≤ 2

k−1
p .

Theorem 14 Let (T, d) be a compact metric space of unit diameter and let
p ≥ 1. Then for every probability measure m on T and every finite alphabet α
there exists a code c : T → {0, 1}∗∗ such that for all t ∈ T∫ 1

0

(len (t, ε))
1/p

dε ≤ C1 (p)

∫ 1

0

(
ln

1

m (B (t, ε))

)1/p
dε+ C2 (p) ,

where

C1 (p) =
24+1/p

1− 2−1/p

(
1

ln 2

)1/p
C2 (p) =

p+ 1

p
+ 21/p +

22+1/p

1− 2−1/p

∑
l∈N0

2−l (l + 2)
1/p

.
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Proof. Let the sequence of partitions (Ak)k≥0 be chosen as in Theorem 11.

Since |Ak| ≤ 22
k

we can, by simple binary counting, find a binary instantaneous
code c(k) : Ak → {0, 1}∗ with len

(
c(k) (A)

)
≤ 2k for all k ≥ 0 and A ∈ Ak. We

now define our code c : T → {0, 1}N to be the infinite concatenation

c (t) = c(1) (A1 (t)) ◦ c(2) (A2 (t)) ◦ ... ◦ c(k) (Ak (t)) ◦ ...,∀t ∈ T.

Fix t ∈ T . Let k ∈ N and

N =

k∑
l=1

len
(
c(l)Al (t)

)
≤

k∑
l=1

2l ≤ 2k+1.

If t′ ∈ ĉ (pN (c (t))) then the first N characters of c (t′) are the same as those
of c (t), so in particular c(k) (Ak (t′)) = c(k) (Ak (t)). Since c(k) is instantaneous
Ak (t′) = Ak (t) and therefore t′ ∈ Ak (t). So ĉ (pN (c (t))) ⊆ Ak (t) and, since
N ≤ 2k+1,

D2k+1 (c, t) ≤ DN (c, t) = D (ĉ (pN (c (t)))) ≤ D (Ak (t)) .

It follows that

1

p

∞∑
k=1

k1/p−1Dk (c, t) ≤ 1

p

1 +

∞∑
k=2

2k−1∑
l=2k−1

l1/p−1Dl (c, t)


≤ 1

p

1 +

∞∑
k=2

D (Ak−2 (t))

2k−1∑
l=2k−1

l1/p−1


≤ 1

p
+ 21/p

∞∑
k=0

D (Ak (t)) 2
k
p

=

(
1

p
+ 21/p

)
+ 21/p

∞∑
k=1

D (Ak (t)) 2
k
p ,

where we used Lemma 13 in the last inequality. To obtain the conclusion we
combine this inequality with the conclusions of Theorem 9 and Theorem 11.
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7 Glossary of notation

(T, d) metric space
D (A) for A ⊆ T diameter of A
α finite alphabet with cardinality |α|
α∗ finite strings over α
α∗∗ = α∗ ∪ αN finite or infinite strings over α
pk (v) , v ∈ α∗∗ truncation of v to length at most k
v ◦ w, for v ∈ α∗, w ∈ α∗∗ concatenation
v ◦ α∗∗ = {v ◦ w : w ∈ α∗∗} set of extensions of the finite string v ∈ α∗
c : T → α∗∗ a code for T over α
ĉ (v) = c−1 (v ◦ α∗∗) subset of T described by v ∈ α∗
V (c) = {v : ĉ (v) 6= ∅} vocabulary used by the code
Dk (c, t) = D (ĉ (pk (c (t)))) ambiguity incurred by truncation of c (t) to k
len (c, t, ε) = min {k : Dk (c, t) < ε} length required to describe t with precision ε
c (t, ε) the corresponding string
Sε (c) = {c (t, ε) : t ∈ T} cross-section of vocabulary at resolution ε
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