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Abstract

The paper proves generalization results for a class of stochastic learning algo-
rithms. The method applies whenever the algorithm generates an absolutely con-
tinuous distribution relative to some a-priori measure and the Radon Nikodym
derivative has subgaussian concentration. Applications are bounds for the Gibbs
algorithm and randomizations of stable deterministic algorithms as well as PAC-
Bayesian bounds with data-dependent priors.

1 Introduction

A stochastic learning algorithm () takes as input a sample X = (X1, ..., X,,) € X™, drawn from
a distribution ;2 on a space X of data, and outputs a probability measure ()x on a loss-class H
of functions h : X — [0,00). A key problem in the study of these algorithms is to bound the
generalization gap

1 n

A (h,X) =E[h(X)] n;hm) (1)
between the expected and the empirical loss of a hypothesis i drawn from Qx. Here we want to gen-
erate h only once and seek guarantees with high probability as X ~ p™ and h ~ (Jx. Alternatively
one might want a bound on the expectation Ex~.g, [A (h, X)] with high probability in X ~ ",
corresponding to the use of a stochastic hypothesis, where a new h ~ QQx is generated for every test
point. We concentrate on the former question, but many of the techniques presented also apply to
the latter, often easier problem.

From Markov’s inequality it follows that for A, § > 0 with probability at least 1 — § as X ~ u™ and
h~Qx

INEx [En~gyx [e*2PX]] +1n(1/5) .
)\ )

which suggests to bound the log-moment generating function In Ex [Er~qy [exp (AA (k, X))]].
With such a bound at hand one can optimize A to establish generalization of the algorithm @ :
X — Qx.

Inequality (2)) is relevant to stochastic algorithms in general, and in particular to the Gibbs-algorithm,
where dQx (h) < exp (— (8/n) > h(X;))dn (h) for some inverse temperature parameter 5 and
some nonnegative a priori measure 7 on H. The Gibbs algorithm has its origins in statistical mechan-
ics (Gibbs [[1902]). In the context of machine learning it can be viewed as a randomized version of
empirical risk minimization, to which it converges as 5 — co, whenever 7 has full support. The dis-
tribution, often called Gibbs posterior (Catoni [2007]), is a minimizer of the PAC-Bayesian bounds
(McAllester [1999]). It is also the limiting distribution of stochastic gradient Langevin dynamics
(Raginsky et all [2017]) under rather general conditions. Generalization bounds in expectation are
given by [Raginsky et al. [2017], [Kuzborskij et al. [2019], most recently by |Aminian et all [2021]].
Bounds in probability are given by |Lever et al.! [2013], implicitly by [Dziugaite and Roy [2018], and
in Rivasplata et al! [2020] following the method of [Kuzborskij et al. [2019]. There is also a bound
by|Aminian et all [2023], improving on the one in (Lever et all [2013]).

A(h,X) <
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Bounding InEx [Ej~qx [exp (AA (h, X))]] is also the vehicle (and principal technical obstacle)
to prove PAC-Bayesian bounds with data-dependent prior Qx, as pointed out by Rivasplata et al.
[2020] (Theorem 1). Such bounds with data-independent prior Qx = (), have an over twenty
year old tradition in learning theory, starting with the seminal work of McAllester (McAllester
[1999]), Langford and Seeger (Langford and Seeger [2001], [Seeger [2002]), see also Guedj [2019].
If the prior is data-independent, the two expectations in InEx [Er~q [exp (AA (h, X))]] can be
exchanged, which reduces the analysis to classical Chernoff- or Hoeffding-inequalities. But a domi-
nant term in these bounds, the KL-divergence KL (P, Q) := Epp [In (dP/dQ) (h)], will be large
unless P is well aligned to @, so the prior () should already put more weight on good hypotheses
with small loss. This motivates the use of distribution-dependent priors, and as the distribution is un-
known, one is led to think about data-dependent priors. Catoni already considers the data-dependent
Gibbs distribution as a prior in a derivation departing from the distribution-dependent Gibbs mea-
sure o< exp (—BEx~, [k (X)]) (Lemma 6.2 in |Catoni [2003]). [Dziugaite and Royl [2017] used a
Gaussian prior with data-dependent width and minimized the PAC-Bayes bound for a Gaussian pos-
terior on a multi-layer neural network, obtaining a good classifier accompanied by a non-vacuous
bound. This significant advance raised interest in PAC-Bayes with data-dependent priors. The
same authors introduced a method to control data-dependent priors based on differential privacy
(Dziugaite and Roy [2018]). Recently [Pérez-Ortiz et all [2021] used Gaussian and Laplace priors,
whose means were trained directly from one part of the sample, the remaining part being used to eval-
uate the PAC-Bayes bound. These developments further motivate the search for in-sample bounds
on the log-moment generating function appearing above in ).

We make the following contributions:

* An economical and general method to bound In Ex [Ej,qx [exp (AA (h, X))]] whenever
the logarithm of the density of (Jx concentrates exponentially about its mean. In particular,
whenever Qx has the Hamiltonian form d@Qx (h) o« exp (H (h, X)) dr (h), then it is suf-
ficient that the Hamiltonian H satisfies a bounded difference condition. The method also
extends to the case, when H is only sub-Gaussian in its arguments.

* Applications to the Gibbs algorithm yielding competitive generalization guarantees, both
for bounded and sub-Gaussian losses. Despite its simplicity and generality the method
improves over existing results on this well studied problem, removing unnecessary loga-
rithmic factors and various superfluous terms.

* Generalization guarantees for hypotheses sampled once from stochastic kernels centered at
the output of uniformly stable algorithms, considerably strengthening a previous result of
Rivasplata et al/ [2018].

2 Notation and Preliminaries

For m € N, we write [m] := {1, ...,m}. Random variables are written in upper case letters, like
X,Y, X etc and primes indicate iid copies, like X', X", X’ etc. Vectors are bold like x,X, etc.
Throughout X is a measurable space of data with a probability measure y, and X will always be the
iid vector X = (X7, ..., X,,) ~ pu™ and X ~ p. H is a measurable space of measurable functions
h : X —0,00), and there is a nonnegative a priori measure 7 on 7. The measure 7 need not
be a probability measure, it could be Lebesgue measure on the space R? of parametrizations of .
Averages over 7 will be written as integrals. P () is the set of probability measures on 7. Unless
otherwise specified E denotes the expectation in X ~ p or X ~ p™. All functions on H x X™
appearing in this paper are assumed to have exponential moments of all orders, with respect to both
arguments.

Forx € X", k € {1,...,n} and y,y" € X we define the substitution operator S5 acting on X" and
the partial difference operator Dg’j,y, acting on functions f : X™ — R by

S;jx = (X1, ooy The1, Yy Tht 1y -, Tn) and D§7y,f (x)=f (S;jx) —f (Sg]j,x) .

ij , always refers to the second argument for functions on H X X"™. The generalization

gap A (h,X) is defined as in (I). Sometimes we write L (k) = E[h(X)] and L (h,X) =
(1/n) > h(X;), so that A (h,X) = L (h) — L (h,X). A table of notation is provided in Ap-
pendix[Cl



2.1 Hamiltonian algorithms

A stochastic algorithm @ : x € A" — Qx € P (H) will be called absolutely continuous, if
@« is absolutely continuous with respect to 7 for every x € X™ and vice versa. We will only
consider absolutely continuous algorithms in the sequel. A real function H on H x X™ is called a
Hamiltonian for @ (a term taken from statistical physics), if forall » € H and all x € A"

e X dm (h)
Z (x)

The normalizing function Z is called the partition function. Every absolutely continuous () has the
canonical Hamiltonian Hg (h,x) = In ((dQx/dm) (h)) (logarithm of the Radon Nikodym deriva-
tive) with partition function Z = 1, but adding any function ¢ : A" — R to Hg will give a
Hamiltonian for the same algorithm with partition function Z (x) = exp (¢ (x)). In practice @ is
often defined by specifying some Hamiltonian H, so Hq (h,x) = H (h,x) — In Z (x) in general.
If 7 is a probability measure, then Ej ¢, [Hg (h,x)] is the KL-divergence K L (Qx, 7).

dQy (h) = with Z (x) = /H eHX)dr (h) .

A Hamiltonian for the Gibbs algorithm at inverse temperature 3 is

putting larger weights on hypotheses with small empirical loss. This is the simplest case covered
by our proposed method. If there is a computational cost associated with each h, it may be in-
cluded to promote hypotheses with faster execution. We could also add a negative multiple of

Yicj (h(wi) —h(x j))Q, so as to encourage hypotheses with small empirical variance. Monte Carlo

methods, such as the Metropolis-Hastings algorithm, can be used to sample from such distributions.
Often these are slow to converge, which underlines the practical importance of using a single hy-
pothesis generated only once.

If H is parametrized by R? one may also first compute a vector A (x) € R? with some algo-
rithm A and then sample from an absolutely continuous stochastic kernel x centered at A (x), so
a Hamiltonian is Inx (h — A (x)). In one concrete version the kernel is an isotropic gaussian, and

H (h,x) = — |h — A(x)||” / (20?). Generalization of these methods is discussed in Section &2l

If QM and Q® are absolutely continuous stochastic algorithms with Hamiltonians H; and Hy
respectively, then an elementary calculation shows that [ + H is a Hamiltonian for the algorithm
Q obtained by sampling from Q") with the measure 7 replaced by Q(?). In this way Hamiltonian
algorithms of different type can be combined.

3 Main results

Let @ be an absolutely continuous stochastic algorithm, F' : H x X™ — R some function and define

U () o= I [ X1 1010.X) 5[t (1)

Our method is based on the following proposition.

Proposition 3.1. With Q, F and v as above

(i) InExpnEnegy [eF"X)] < suppeqy vor (h).

(ii) Let 6 > 0. Then with probability at least 1 — § in X ~ ™ and h ~ Qx we have

F(h,X) <sup¢p (h)+1In(1/5).
heH

(iii) Let 6 > 0. Then with probability at least 1 — § in X ~ u"™ we have

En~ay [F (h,X)] < sup vor (h) +1In (1/6).
heH



Proof. (i) With Jensen’s inequality
IHEXN#nEhNQX [eF(h,X)} _ IHEXNML |:/ eF(h,X)-i—HQ(h,X)dﬂ- (h)}
H
=1D/HEx~m |:6F(h,x)+HQ(h,X)—E[HQ(h,X/)]:| e]E[HQ(h,X/)]dﬂ_ (h)
= ln/ ewF(h)eE[HQ(h’X/)]dW (h)
H
<In / E [evreia ()] dW(h)—ln]E{ / ewp(h)eHQ(h’X,)dﬂ(h)}
H H

=InEx~unEpwgx {ewp(h)} < sup ¥ (h).
heH
(ii) then follows from Markov’s inequality (Section[A.T). (iii) follows also by Markov’s inequality,
since InEx o [eBr~ox PRI <InEx mEpugy [e"X)], by Jensen’s inequality. O

To see the point of this lemma let ' (h, X) = AA (h,X). Since A (h,X) is centered, ¥ a is of
the form In Ex» [ef X)—E[f(X)]] Many concentration inequalities in the literature (McDiarmid

[1998], Boucheron et all [2013]) foliow the classical ideas of Bernstein and Chernoff and are derived
from bounds on such moment generating functions. If F' (h, X) is not centered, we can use Holder’s
or the Cauchy-Schwarz inequality to separate the contributions which F' and Hg make to ¢ r. The
F-contribution can be treated separately and the contribution of H¢ can again be treated with the
methods of concentration inequalities.

The last conclusion of the lemma is to show that we can always get bounds in expectation from
bounds on the exponential moment. In the sequel we only state the stronger un-expected or "disinte-
grated" results.

Typically the exponential moment bounds for functions of independent variables depend on the
function’s stability with respect to changes in its arguments. In Section [d.2]a more advanced con-
centration inequality will be used, but all other results below depend only on the following classical
exponential moment bounds. Most of them can be found inMcDiarmid [[1998], but since the results
there are formulated as deviation inequalities, a proof is given in the appendix, Section

Proposition 3.2. Let X, X, ..., X, be iid random variables with values in X, X = (X1, ..., X,,)
and f : X™ — R measurable.

(i) If f is such that for all k € [n], x € X™ we have Ex {ef(sﬁx)*]EX’[f(SI;c'x)]} < e, then
B [o/00-E00)] < on

(ii) IfD’;_’y,f (x) <cforallk € [n], y,y € X andx € X", then E [ef(x)_E[f(X/)]} < ene’/8,
(iii) If there is b € (0,2), such that for all k € [n] andx € X™ we have f (x)—Ex:~, [f (S%x)] <
b, then with vy, = sup,cyn» Ex~pu {(f (S}x) —Exrnp [f (Sﬁ,x)])Q]
X it 1 &
FX)-E|f(X
Ex[e [£( )]}Sexp<2_b2vk>.

k=1

Notice that the second conclusion is instrumental in the usual proof of McDiarmid’s (or bounded-
difference-) inequality (McDiarmid [[1998]).

3.1 Bounded differences

In the simplest case the Hamiltonian satisfies a bounded difference condition as in (ii) above. Then
the only minor complication is to show that the logarithm of the partition function inherits this
property. This is dealt with in the following lemma.



Lemma 3.3. Suppose H : H x X™ — R and that forallh € H, k € [n], y, y € X andx € X"
we have DY H (h,x) < c. Let

Hg (h,x) = H (h,x) — In Z (x) with Z (x) = AeH(h’x)dw (h).

ThenVh € H,k € [n], y, y' € X, x € X" we have D}, Hg (h,x) < 2c.

Proof. This follows from the linearity of the partial difference operator D’;yy/ and

Z (SZ/X) - f?—t exp (Dg’j,)yH (h, x)) exp (H (h, S;jx)) dm (h)

D, nZ(x) = In =In
yynZ(x) Z (55%) T, exp (H (h, S5x)) dr (1)
< Insupexp (D];,_yH (h,x)) < e
heH i

O

Theorem 3.4. Suppose H is a Hamiltonian for Q and that for all k € [n), h € H, y, vy € X and
x € X" we have D’;yy,H (h,x) < candh (y) € [0,b]. Then

(i) For any A > 0

n [ \b 2
IHEXN#nEhNQX [eAA} < su’*[—)l (VSN (h) < g <; + 20> .
S

(ii) If § > O then with probability at least 1 — § as X ~ p™ and h ~ Qx we have

A (h,X) §b<c—|— W)

Proof. Using the previous lemma D , (AA (h,x)+ Hg (h,x)) < (Ab/n) + 2¢.  Since
E [AA (h, X)] = 0, Proposition[3.2] (ii) gives, for any h € H,

2
Yaa (h) =InE {e’\A(h’XHHQ(h’X)—E[HQ(’%X')]} < (& + 2c)
— 8 n )
and the first conclusion follows from Proposition B.11(i) with F' (h,x) = AA (h, X).
From Proposition[3.1] (ii) we get with probability at least 1 — § as X ~ u™, h ~ Qx that

Ab 2 1 A2 be  nc?/2+1n(1/6)
< -1 2 - — - — ' 7.
A(hX) <A (8(n+2c> +ln5> T3t 5

Substitution of the optimal value A\ = /(8n/b2) (nc2/2 + In (1/4)) and subadditivity of ¢ — /%
give the second conclusion. o

In applications, such as the Gibbs algorithm, we typically have ¢ = O (1/n). The previous result is
simple and already gives competitive bounds for several methods, but it does not take into account
the properties of the hypothesis chosen from (x. To make the method more flexible we use the
Cauchy-Schwarz inequality to write

Vvp(h) = IHE{eF(h,x)JrHQ(h,x)fJE[HQ(h,x')]}

IN

llnIE {ezF(h,x)} n llnE [ez(HQ(h,x)—E[HQ(h,x/)]) 3)
2 2

and treat the two terms separately. The disadvantage here is an increase of constants in the bounds.
The big advantage is that different types of bounds can be combined.

The next result is based on this idea. It is similar to Bernstein’s inequality for sums of independent
variables.



Theorem 3.5. Under the conditions of Theorem [3.4] define for each h € H its variance v (h) =
E|{(h(X)—E[h (X')])Q] Then for 6 > 0 with probability at least 1 — 6 in X ~ p" and h ~ Qx

A (h,X) §2\/v(h) (c2+M> +b<c2+w).

n n

Similar to Bernstein’s inequality the above gives a better bound if the chosen hypothesis has a small
variance. For the proof we use the following lemma, which is a direct consequence of Proposition

B.2iii).
Lemma 3.6. (Proof in Section[A3) Assume that for all h € H and x € X, we have h (x) € [0, D]
and v (h) as in Theorem[33above. Let \ : H — (0,n/b) and define F : H x X™ — R by

AR)? w(h)
1—=bA(h)/n n

Then for all h € H we have E [eQFX(h*X)} <1

Proof of Theorem[3.3 Let
nc? +1n (1/9)
(b/n) /nc + 1 (1/8) + /24
and let Iy be as in Lemma[3.6l It follows from Lemma[3.3land Proposition[3.2](ii) that for all h € H
we have InE [eQ(HQ(h’X)f]E[HQ(h’x/)])} < 2nc?. Then (3) and Lemma[3.6] give ¢ (h) < nc?.
Thus from Proposition [3.J]and division by A (h)
A(h) v(h) nc+1n(1/)
P A (h, X J.
an,;rw@x{ X > T e n T am <
Inserting the definition of A (h) and simplifying completes the proof. O

A(h) =

At the expense of larger constants the role of the variance in this result can be replaced by the
empirical error, using v (k) < E [k (X)]* < bE[h(X)] and a simple algebraic inversion, which is
given in the appendix, Section

Corollary 3.7. Under the conditions of Theorem B3 for § > 0 with probability at least 1 — ¢ in
X ~u™andh ~ Qx

A (h,X) §2\/ﬁ(h,X)b(02+M> + 5b (cz—i-M).

n n

3.2 Subgaussian hypotheses

Some of the above extends to unbounded hypotheses. A real random variable Y is o-subgaussian

foro > 0,if E [exp (A (Y — E[Y"]))] < e**°/2 for every A € R . The proof of the following result
is given in the appendix (Section[A.3)) and uses ideas very similar to the proofs above.

Theorem 3.8. Let Q) have Hamiltonian H and assume that Yh € H there is p (h) > 0 such that
VAERE [eAWX)*E[h(X')])] < X
Let p = supy,cy p (h) and suppose that YA € Rk € [n],h € H

E {eA(H(h,sgzx)4E[H(h,s§<,x)])} < oy

(i) Then for any h € H, A > 0

InExunEnvgy [€4] < aa (h) <

(Ao (h) /v/n + 2V/n0)°
2



and with probability at least 1 — 6 we have as X ~ u™ and h ~ Qx that

A(h,X)§p<20+ M)

n

(ii) With probability at least 1 — § we have as X ~ u™ and h ~ Qx that

A (h,X) < p(h) (mﬁ M)

n

The assumptions mean that every hypothesis has its own subgaussian parameter and that the Hamilto-
nian is subgaussian in every argument if all other arguments are fixed. The first conclusion parallels
the bound for Hamiltonians with bounded differences in Theorem [3.4] the second conclusion has
larger constants, but scales with the subgaussian parameter of the hypothesis actually chosen from
Qx, which can be considerably smaller, similar to the Bernstein-type inequality Theorem[3.3]

4 Applications

4.1 The Gibbs algorithm

The Gibbs distribution for a sample x is dQgx (h) = Z texp (— (8/n) Y iy h(x:)) dr (h), so
the Hamiltonian is H (h,x) = — (8/n) Y., h(x;). As it is the minimizer of the PAC-Bayesian
bounds (McAllester [[1999]) generalization bounds for the Gibbs distribution translate to guarantees
for these algorithms, although the exact 5 for the minimizer is known only implicitly. Let us first
assume bounded hypotheses, for simplicity i : X — [0, 1]. Then we can use Theorems[3. 4 and 3.3l
and Corollary 3.7 with ¢ = 3/n. Theorem[3.4] gives with probability at least 1 — § in X ~ p™ and

h ~ Qﬁ,X that
A x) < By /i) @)
n 2n

We were not able to find this simple bound in the literature. It improves over

4B 2+ln((1 +/€) /0)
vn
obtained in (Rivasplata et all [2020], Sec. 2.1 and Lemma 3) not only in constants, but, more impor-

tantly, in its dependence on the confidence parameter §. The principal merit of (@), however, lies in
the generality and simplicity of its proof (compare the proof of Lemma 3 in|Rivasplata et al. [2020]).

A(h,X) <

Upon the substitution ¢ = §/n Theorem leads to a variance dependent bound, for which we
know of no comparable result.

From Corollary 3.7l we get for the Gibbs algorithm with probability at least 1 —§ in X and h ~ Qg x

A(h,X)§2\/ (hX)<BQ (711/5))+5<§2 (1/5)>, 5)

n

For hypotheses with small empirical error this approximates a "fast convergence rate" of O (1/n).
Comparable bounds in the literature involve the so-called "little KL-divergence". For two num-
bers s,t € [0,1] the relative entropy of two Bernoulli variables, with means s and ¢ respec-
tively, is kIl (s,t) = sln(s/t) + (1 —s)In((1 —s)/ (1 —t)). Various authors give bounds on

EhnQs [kl (fi (h,X), L (h))} with high probability in the sample. [Rivasplata et al. [2020] give
[ 4
By [ (L X).L0)] <20 4 vARE L4 L (M),

and there is a similar bound in |Dziugaite and Roy [2018] and a slightly weaker one in [Lever et al.
[2013]. The most useful form of these bounds is obtained using the following inversion rule

(Tolstikhin and Seldin [2013], see also |Alquien [2021]): if ki (f) (h,x),L(h)) < B then



A (h,x) < \/2L (h,x) B 4+ 2B. If this rule is applied to the kI-bound above, it becomes clear,
that it is inferior to (3), not only because of the logarithmic dependence on n, but also because of
artifact terms, which are difficult to interpret, like the superfluous 3/ n3/2,

If every h (X) is p (h)-subgaussian and p = supy, p (h), then by linearity of the subgaussian pa-
rameter H (h, X) is p3/n-subgaussian in every argument for every h, and Theorem 3.8 gives with
probability at least 1 — 6 in X ~ p™ and h ~ Qg x

28 4111(1/5)).

n

A(h,X)Sp(h)<

Recently |Aminian et al/ [2023] gave a very interesting bound in probability for sub-gaussian hy-
potheses, which however is not quite comparable to the above, as it bounds the posterior expectation
of A and relies on a distribution-dependent prior.

4.2 Randomization of stable algorithms

Suppose that H is parametrized by R?, with 7 being Lebesgue measure. To simplify notation we
identify a hypothesis h € H with its parametrizing vector, so that h is simultaneously a vector in R?
and a function b : © € X — h (z) € R. Following Rivasplata et al. [2018] we define the hypothesis
sensitivity coefficient of a vector valued algorithm A : X™ — R? as

_ k
oA S S Prr A

In typical applications c4 = O (1/n) (compare the SVM-application in [Rivasplata et al! [2018], as
derived originally from[Bousquet and Elisseeff [2002]).

Consider first the algorithm arising from the Hamiltonian
H (h,x)=-G(h— A(x)), (6)
where G : R? — [0, 00) is any function with Lipschitz norm [GllLip- One computes A (x) and sam-

ples h from the stochastic kernel proportional to exp (—G (h — A (x))). By the triangle inequality
H satisfies the bounded difference conditions of Theorems[3.4land 3.3l with ¢ = [|G|| ;, ca. If every

h € H (as a function on X) has range in [0, 1], then, although this algorithm is of a completely
different nature, we immediately recover the generalization guarantees as for the Gibbs-algorithm
with 3/n replaced by [|G||;;, ca. An obvious example is G (h) = |[h|| /o for o > 0.

Another interesting algorithm arises from the Hamiltonian
2
1h — Al
202 ’
for ¢ > 0, corresponding to gaussian randomization. For stochastic hypotheses there is an elegant

treatment by Rivasplata et al) [2018] using the PAC-Bayesian theorem, and resulting in the bound
(with probability at least 1 — § as X ~ p'*)

H (h,x) = —

2 2 -
Envax [K (L0, X), 2()] < 22 (L ysh f)) o (¥) )

Since the squared norm is not Lipschitz the previous argument does not work, but with a slight
variation of the method we can prove the following result (proof in Section [B.1]).

Theorem 4.1. Let H = R? with Lebesgue measure w. Suppose Q has Hamiltonian H (h,X) =
— |h — A(X)||* /202, where A has stability coefficient c.5. Let § > 0 and assume that 12nc, < o>
and that every h € H (as a function on X) has range in [0,1]. Denote the variance of A by

V(4)=E [||A (X)—E[A (X’)]Hﬂ. Then

(i) Ifn > 8 then InEx [EhNQx [e<"/2>kl(ﬁ<h=x>i<h>)” < BV (A)+$m(2vm).
(it) If n > 8 then with probability at least 1 — 6 as X ~ p™
. SYVY(A)+1In(2y/n) +2In(1/6
B [l (10,30, £ )] < VAL H ROV £210(0)0)

n




(iii) With probability at least 1 — 6 as X ~ u™ and h ~ Qx

A(hX) < \/(3/02)V(A) +1n(1/0)

n

(iv) Let v (h) be the variance of h, defined as in Theorem Then with probability at least 1 — ¢
as X ~ pu"and h ~ Qx

(3/02)V (A) +1n(1/9) N (3/6%) V(A) +1n (1/6).

n n

A (h,X) < 2\/1} (h)

The expected kl-bound (ii) is given only for direct comparison with {@). (iii) and (vi) are stronger,
not only by being disintegrated, but also by avoiding the logarithmic dependence on n.
In comparison to (7) (ii) has slightly larger constants and we require that 12nc% < o?. The latter

assumption is mild and holds for sufficiently large n if nc3, — 0 as n — oo (in applications of
@ ca = O(1/n)), but nc%, may even remain bounded away from zero for 12nc% < o2 to hold.

On the other hand V (4) = E “\A (X) —E[A (X)) ||2} is always bounded above by nc (see the

proof of Lemma 6 in Rivasplata et al! [2018]), so we recover (Z) from (ii), while our bound can take
advantage of benign distributions. In fortunate cases V (A) can be arbitrarily close to zero, while
the nc? in (@) is a consequence of the use of McDiarmid’s inequality in the proof, and (7) remains
a worst case bound.

The bound (iv) can be inverted as in Corollary[3.7]to give faster rates for small empirical errors, but
without the logarithmic dependence in n as in the inverted version of (ii).

4.3 PAC-Bayes bounds with data-dependent priors

We quote Theorem 1 (ii) in (Rivasplata et all [2020]). For the convenience of the reader we give a
proof in the appendix (Section [B.2).

Theorem 4.2. Let F' : H X X™ — R be measurable. With probability at least 1 — § in the draw of
X ~ p™ we have forall P € P (H)

Enp [F (h, X)) < KL(P,Qx) + MEx [Epegy [ 0]] +1n(1/6).

By substitution of our bounds on In Ex [EhNQx [eF (h’x)ﬂ we obtain raw forms of PAC-Bayesian
bounds with prior @x for all the Hamiltonian algorithms considered above. But since the final
form often involves optimizations, some care is needed. In the simplest case let F' (h,X) =

(n/2) ki (ﬁ (h,X),L (h)), substitute (i) of Theorem 1] above and divide by n/2, to prove the
following.

Theorem 4.3. Under the conditions of Theorem we have with probability at least 1 — ¢ in
X ~ p™ forall P € P (H) that

Enep [ (L(h,X),L(0)] < 2KL (P,Qx) + 75V (A) +1n(2y/n) + 2In (1/9).

n

It applies to the case, when the prior is an isotropic Gaussian, centered on the output of the algo-
rithm A, a method related to the methods in [Dziugaite and Roy [2018] and [Pérez-Ortiz et al. [2021]].
Section[B.2] sketches how PAC-Bayesian bounds analogous to [4.1] (iii) and (iv) are obtained.

5 Conclusion and future directions

The paper presented a method to bound the generalization gap for randomly generated and determin-
istically executed hypotheses.

One can probably prove an analogue to Theorem [3.4] for non-iid data generated by a uniformly
ergodic Markov chain, by using Marton’s coupling method as for example in [Paulin [2015].



It also appears possible to apply the method to iterated stochastic algorithms, where the randomiza-
tion of a stable "microalgorithm" is repeated, as with stochastic gradient Langevin descent (SGLD).
Under appropriate conditions this might give bounds of the generalization gap along the entire opti-
mization path.

An obvious challenge is to give bounds for the Gibbs algorithm in the limit 5 — oo, or, more
generally, in the regime 5 > n. It is unlikely that the methods of this paper can be successfully
applied to this problem without very strong and unnatural assumptions.
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A Remaining proofs of Section[3

A.1 Markov’s inequality

We use the following consequence of Markov’s inequality.

Lemma A.1. For any real random variable Y and § > 0 we have
Pr{Y >InE[¢"] +In(1/6)} <4.
Proof. From Markov’s inequality Pr {eY >E [ey} /0 } < 4. Take logarithms. O

A.2  Proof of Proposition[3.2]

Lemma A.2. (i) Let p (t) = (et —t — 1) /t? ift # 0. Then the function ¢ is increasing, and if the
random variable X satisfies E[X] = 0 and X < bforb > 0, then

E [¢X] < e#®EIX]
(i) o (t) <1/ (2—1t) for0 < t < 2.

Proof. Part (i) is Lemma 2.8 inMcDiarmid [[1998]. (ii) follows from a term by term comparison of

the power series
0= iy =3 o
R A ) I B S o

O

Proposition A.3 (Restatement of Proposition[3.2). Let X, X1, ..., X,, be iid random variables with
valuesin X, X = (X1, ..., X)) and f : X™ — R measurable.

(i) If f is such that for all k € [n], x € X™ we have Ex [ef(séc(x)_EX'[f(s;’x)]] < e, then
E ef(x)_]E[f(X/)]} <enr.

.. k n FX)-E|f(X’ nc?/8
(i) If Dy, f (x) < cforallk € [n], y,y" € X and x € X", then E [e [( )]} <enc/8,

(iii) If there is b € (0,2), such that for all k € [n] andx € X™ we have f (x)—Ex:~, [f (S%x)] <
b, then with vi, = sup, e xn Ex~p {(f (Sf(x) —Exiep [f (S&x)])ﬁ

X it 1 <&

Ex {ef(X)*]E[f(X )]:| < exp <m Z Uk) .

k=1

Proof. (i) For S C [n] we write Eg [] = E [ /| {Xi}igs} , s0 Eg [] is integration over all variables
in S. By independence {Eg [.] : S C [n]} is a set of commuting projections and Eg, [Eg, []] =
Es,us, []- K[z is expectation in all variables up to Xy, and Ey;, is expectation only in X. The
assumption therefore reads

Eg [ef(X)—E{k}[f(X)]} <e”

Using Egz_1j [Epg [f (X)]] = Ege—1) [Eqxy [f (X)]].We have the telescopic expansion
FX)=E[f(X)] = D Epy[f (X)) — By [f (X)]
k=1

= N Epon [f(X) ~Egy [f (X)]],
k=1

13



We claim that forallm, 0 <m <n

E {ef(X)—E[f(X/)]} <em lexp( Z Ep—) [f (X) = Egy [f (X)H>]

k=m+1

from which the proposition follows with m = n. Because of above telescopic expansion the claim
is true for m = 0, and we assume it to hold for m — 1. Then

B [eﬂX)—E[f(X')]}
exp <Z Epe—q) [f (X) —Egy [f (Xﬂ])]

exp <E[m—l] lf (X) =By [F (O] + > By [f(X) =By [f (X)H] )]

k=m+1

< e(m—l)r2E

_ e(mfl)rzE

because the later terms depend only on the variables X,,, 41, ..., X,,. By Jensen’s inequality the last
expression is bounded by

exp (f (X) =By [F (X)) + D By [£(X) —Egy [f (X)]]ﬂ

k=m-+1

e(m—l)r2E

_e<m—1>T2El fX)=Emy IS exp( > Epey [f(X)-Egu If (X)Hﬂ

k=m+1
— e(mfl)rzE lE{M} { F(X) =By [f(X)] } exp( Z E[k 1) ) E{k} [f (X)”)] ,
k=m+1

again because the later terms do not depend on X,,, and by assumption the last expression is

bounded by
e E [exp( Z Ee—y [f (X) —Egy [f (X)H>] )

k=m+1
which completes the induction and the proof of (i).

(i) follows from (i) and Hoeffding’s lemma (Lemma 2.2 in[Boucheron et all [2013]) which says that

2

B [e (S50 Brl1(550)]] < %

f— )

if f (SFx) as a function of y has range in a set of diameter c.
(iii) Follows from (i) and Lemma[A.2] since

EXN# {e.f(sl)ccx)_]EX/Nu[f(S;/X)]:| < e@(b)vk

A.3 Proof of Lemma[3.6

Lemma A.4 (Restatement of Lemma[3.8). Assume that for all h € H and v € X, we have h (x) €
[0,D]. Let X : H — (0,n/b) and define F : H x X™ — R by

AR w(h)
1=bA(h)/n n

Then for every h € H we have E [62F*(h’x)] <1
Proof. Forevery h € H we have 20\ (h) /n € (0,2). AlsoVx € X", andVh € H

A (%) = Exro [S% A (h,%)] = = (B [ (X")] — B (2x)) <

n

Sl

14



Thus for every h € H we can apply Proposition[3.2] (iii) to f (x) = 2\ (k) A (h,x) and obtain

E{eQF(h;X)Tm _ E[exp(2)\(h)A(h7X))]l/zeXp<1—_l:\)\((hf3)/nvflh)>

o 2A(R)? v (h) o “A(R)? w(h))
Plo=2mn () /n n PUT=ovmy/nn |~

IN

A.4 Proof of Corollary[3.7]
Lemma A.5. Let L, L, A > 0 and assume that
L<L+2VLVA+ A
Then L < L +2V LA+ 5A
Proof.
L < L+2VIVA+A — L-2VIVA+A<L+24
2 A
— (VI-VA) <i+24 — VI<\L+24+VA

— I< (\/£+2A+\/Z>2gﬁ+2\/ﬂ+(3+\/§),4.

The lemma follows from 3 + v/2 < 5. O
To get Corollary B 71 apply this to Theorem[3.3l

A.5 Proof of Theorem[3.§

Lemma A.6. (From |Buldvgin and Kozachenkd [1980]) (i) if Y is o-subgaussian then
E|(Y-E [Y])2 < o2 (ii) if Y1 and Ys are o1 - and oo-subgaussian respectively, the Y, + Y is

01 + o2-subgaussian.

The next lemma shows that the log-partition function In Z (X) is exponentially concentrated, when-
ever the Hamiltonian H (h, X) is subgaussian uniformly in h.

Lemma A.7. Let p > 1 and H (h,X) be o-subgaussian for every h € H and
Z (x) = / eHhX)qr (h) .
H
(i) Then In E |:ep(f In Z(X)Jr]E[an(X’)])} < p2o?.
(i) If f + X™ — Ris p-subgaussian then
InE {ep(ﬂX)—E[f(X’)]—lnZ<X>+E[an(X')])} <p*(p+0)°.

Since the inequalities are given only for p > 1 they do not quite imply that In Z itself is subgaussian.

Proof. We only need to prove (ii), which implies (i) by setting f = 0. By Jensen’s inequality
Ex [ep(f(x)—E[f(x/)]_ln Z(X)+E[In Z(x/)])} < Exx [ep(f(X)—f(X/)—ln Z(X)+In Z(X/))}

- Ex [epf<x>z (X)*P] Ex {e‘pf(x)Z(X)p} .

15



Define a probability measure v on H by v(A) = 2z, [, EH"Xlgr () for A C H
measurable.with Z,, = [, e“H("Xldr (h). Then

Z(X)" = (Epw [eH<th>*E[H<th’>l})_p 70 < By, [ ELHOX)-HO2)] 70

by Jensen’s inequality, since ¢ +— ¢! is convex. Similarly

Z(X)P < Epy [ep(H(h,X)—IE[H(h,X’)])} 7

v

Thus the above inequality can be written
p(f(X)-E[f(X')]-In Z(X)+E[In 2(X')])| <« p(f(X)+E[H(h,X")]|-H(h,X))
EX € < EX EhN,j €
xFx [Ehw [ep(—f(x)+H(h,X)—]E[H(h,X/)])}} '
The first factor can be bounded by
E,., {]Ex [ep(j'(X)Jr]E[H(h,X’)]7H(h,X))}} < ep]E[f(X’)]eM

by the subgaussian assumptions for f and H and Lemma[A.6] (ii), and similarly the second factor is
bounded by
o PEL ()] P

Putting the two bounds together completes the proof. o

Theorem A.8 (Restatement of Theorem[B.8). Let Q have Hamiltonian H and assume that Vh € H
there is p (h) > 0 such that

2p 2
V}\ER,E[G((X)]E :| A (h)
Let p = supy,cy p (h) and suppose that VX € R,k € [n] ,h € H
E {eA(H(hvsxx) E[(h, Sx/X)])] <e
(i) Then for any h € H, A > 0
Ap (h n+ 2y/no)’
ln]EXN,u."EhNQx [SXA} S 1/)>\A (h) S ( p( )/\/; \/_ ) 5
and with probability at least 1 — 6 we have as X ~ u™ and h ~ Qx that
2In(1
A(hX) <p <20—|— M) .
n

(ii) With probability at least 1 — § we have as X ~ u™ and h ~ Qx that

A(h,X) < p(h) <\/3_20+ M)

n

Proof. Let h € H be any fixed hypothesis. By assumption and Proposition (i) H (h,X) is
v/no-subgaussian and AA (h, X) is Ap (h) /+/n-subgaussian.

Using the previous lemma (i) with p = 1 and f (X) = MAA (h,X) + H (h,X) — E[H (h,X")],
which is centered and \p (k) /y/n + /no-subgaussian, we get that

van (k) = InEx |:€)\A(h’x)+HQ(h’)X)_E[HQ(h,xl)]i|

— IE {ef(X)fln Z(X)+E[In Z(X’)]}

(Ao (h) /v + 2V/n0)’
: .

IN

16



With p (g) < p we get from Proposition[3.1] that with probability at least 1 — ¢§

2
A 2 In(1/6
Ax) < DQovatayio) in(ys)
2\ A
Ap? N 2no? +1n (1/9)
2n A
The optimal choice of A and subadditivity of ¢ — v/t give

A(h,X)§p<2a+ M)

+ 2po

n

(ii) We proceed as in the proof of Theorem[3.3] For Hg (h,X) = H (h,X) —In Z (X) the previous
lemma yields with f (X) = H (9,X) — E[H (g, X’)] and p = 2 that

Ex {62(HQ(h,X)—E[HQ(h,X')])} < 8,

Also
Ex [ezm(h,x)] < o2\ p(h)?*/n.

A(h) = J <ﬁh>2> (8no2 + In (1/5))

and F (h,X) = A (h) A (h, X) — A (h)? p (h)? /n. Then with Cauchy-Schwarz

Yr(h) = lnE[eF(h,X)-‘rHQ(h,X)_]E[HQ(,LX/)]}

Now define

< In ((Ex [ezAA(h,x)Dl/Q ef)\(h)zp(h)z/nEX [SQ(Hq(h,X)]E[H@(h,X’)]):|1ﬂ>
< 8nol.
Proposition3.1] then gives

A(h)p(h)®  8no?+1In(1/6)

A(h,X) < " )
= \/%h)2 (32no? +41n(1/9))
= p(h) <\/§U + M) .
The conclusion follows from subadditivity of ¢ — Vt. O

B Remaining proofs for Section 4

B.1 Proof of Theorem[4.1]

We need the following Lemma.
Lemma B.1. Let w,v € R? and \ € [1,00) then

By [ F 1 wlP)] (252l

Proof. We can absorb v/20 in the definition of the norm. Then by translation

—x(um—vn%uw—wuz)} _ -2 ||w—<v—w>||2—||w||2)}

Eor N (w,1) [6 Eono,n {6 (

e Alo—wl?

EwNN(O,I) |:€2)\(m,'u—w>} )
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Rotating v — w to ||v — w]|| e1, where e is the first basis vector, and using independence of the
components gives

2)\<z,v7w>:| EwNN(O I |:€2)\||'u7w|\<z,el>:| _ 1 /00 62)\||1;7w|\t7t2/2dt

E,. [e
N(0,I) Jon

227 lo—w]||®  poo 22 Jv—w] —t )2
_ [T () gy = 2ol

Vo —o0
Combination with the previous identity and taking v/20 back out of the norm completes the proof.

O

Our proof of Theorem [4.1] uses the following exponential concentration inequality, implicit in the
proof of Theorem 13 in (Maurer [2006]) and in the proof of Theorem 6.19 in (Boucheron et all
[2013])

Theorem B.2. Let f : X™ — R and define an operator D? by

n 2
(D2f) (x) = ; (f (x) = inf f (Sifx)) :
If for some a > 0 and all x € X™, D?f (x) < af (x), then for X € (0,2/a)

InE [e’\(f(x)_E[f(X/)])} < AQ@L‘IC()\X)] or equivalently In|E {e’\f(x)} < %fa(/\x)].

Proof of Theoremd. 1l All Gaussians with covariance 021 have the same normalizing factors, so
the partition function for H (h,x) = —||h— A (x)||*/ (202) is also the normalizing factor of
N (E[A(X)],0?I), whence, using Cauchy-Schwarz,

IHEX [EhNQx [GF(h’X)}} = IHEX |:/ eF(h"X)JrHQ(h’X)dﬂ' (h):|
H

— 2 —E 2
= InEx [EhNME[A(x)Lgu) {eF () — 2P =2l ”

1 1 _o(llh=AX) (2 |h—E[A)]I 2
5 sup InEx {€2F(h’x)} + 5 InEx [EhNN(E[A(X)].gzz) [e 2( 153 207 )”
2 heH 2 ’

=:C+ B.

The bound on C' depends on the respective choice of F' and will be treated below. Using Lemmal[B.1]
the second term is equal to

IN

B = lmEx [e(,~—z||A<X>—E[A<X>1||2} .
2

To apply TheoremB2to f (x) = ||A (x) — E[A(X)]||> we fixx € X" and k € [n], and lety € X
be a minimizer of ||A (Shx) —E[A(X)] ||2 Then

(160 - it £ (5529 = (1409 ~ BLAGIE - 4 (8} - EA ")’
:<A(x)—A(Sk ),A(x)—E[A(X)]—i—A(SgX)— [A >
< AG) - A (s (4 [(X)|+!\A(5k) E[AX)])” < 4c4f (x
2
A

Summing over k we get D?f (x) < 4ncAf (x). Since 12nc%/o? < 1 < 2 we can apply the
theorem with @ = 4nc% and A\ = 3/0? to obtain

(3/0*) E[14(X) ~E[4 (X)]|*]

B
2 —12nc? /o?

Lin [o0e)ll400-su(x))I"] <
2

SE[1400) - EAX)IP] = Sv ).

IN
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() Let F(h,X) = (n/2)k (ﬁ (h,X),L(h)). Then using (Maurel [2004]) C =
supy, InEx [e2F("X)] /2 < (1/2)1n(2y/n), so from the above

(n/2kU(L(h.X). L) ]| < 3 1
hlEX {EhNQx {6 }:| ~ Uzv (A) + D) In (2\/5) )
which is (i). By Jensen’s inequality

InEx [e(n/Q)JEh,NQx [kz(ﬁ(h,x),L(h))]} < InEx [Ethx {e(n/Q)kl(ﬁ(h,X),L(h))H

3

so part (ii) then follows from Markov’s inequality and division by n /2.

(iii) Let F' (h,X) = AA (h,X) for A > 0. Using Proposition 3.2] (ii) we get for all b € H that
C = (1/2)InEx [e2F("X)] < X2/ (4n), so
A2 3

InEx [EhNQx [eAA(h’X)H = + ;V (A4). ®)

Markov’s inequality gives with probability at least 1 — § as X ~ u™ and h ~ @Qx that

A 2V (A)+1n(1/6)
A(h,X)gRJr 3 .

Optimization of A gives (iii).
(iv) We proceed as in the proof of Theorem[3.3] Let

VY (4) +1n(1/6)

A(h) =
(1/n) JZV (4) +In(1/5) + /22

and set 2
B (0 X) = M) & ) — 2y

By Lemma[3.612C = InEx [eQF%(h'fX)} <0, so

3

hlEX [EhNQx |:€F>‘(h’x)}:| < 3

V(4),

g
and with probability at least 1 — § as as X ~ p™ and h ~ Qx

Ah)  w(h) SV (A)+In(1/5)
T () /n n N }<5'

Pr {A (h,X) >
Inserting the definition of \ (h) completes the proof.

B.2 PAC-Bayes bounds with data-dependent priors

Theorem B.3 (Restatement of Theorem[d.2). Let F' : H x X™ — R be measurable. With probability
at least 1 — § in the draw of X ~ u™ we have for all P € P (H)

Enp [F (h, X)) < KL (P,Qx) + MEx [Epegy [ 0]] +1n(1/6).

Proof. Let P € Py (H) be arbitrary. Then

En~p [F (h,X)] = KL (P,Qx) nexp (En~p [F (h, X) = In (dP/dQx (h))])

InEpp [exp (F (h,X) —In (dP/dQx (h)))]
I Ejp [ (dP/dQx (1) ']

I
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So we only need to bound the last expression, which is independent of P. But by Markov’s inequality
(Lemmal[A_T)) with probability at least 1 — § in X ~ u™

InEpox {eF(h’X)} < InEx [exp (lnEhNQx {eF(h’X)D} +1n(1/9)

= WEx [Epegy [¢7" 0] +1n(1/0).

O

We close with a method to deal with the problem of parameter optimization in the derivation of PAC-
Bayesian bounds from our results. We apply it to the case of Gaussian priors centered on the output
of stable algorithms, but analogous results can be equally derived for Hamiltonians with bounded
differences or sub-gaussian Hamiltonians. Our first result is a PAC-Bayesian bound analogous to
part (iii) of Theorem 4.1l

Theorem B.4. Under the conditions of Theorem we have with probability at least 1 — § in
X ~ p™ forall P € P (H) that

En~p [A (h, X)] > \/%V (4) +2KL (P, Qx) +In (2KL (P, Qx) /5)'

n

To prove this we first establish the following intermediate result.

Proposition B.5. Under the conditions of Theoremd 1 let K > 0 and § > 0. Then with probability
at least 1 — § as X ~ u™ we have for any P € P (H) with KL (P,Qx) < K that

Enop [A (7, X)] < \/%V(A) + K +1n(1/5)

n

Proof. If KL (P,Qx) < K we get from Theorem[4.2] and inequality (8) with probability at least
1—6inX ~ pu”

Erp [MA (1, X)] = K < Epwp[MA (R, X)] - KL (P,Qx)
< InEx [E,WQX {ewhv’qﬂ +1n (1/6)
< /\—2+3V(A)+ln(1/5)
= 4n o2 '
Bring K to the other side, divide by A and and optimize A to complete the proof. O

To get rid of K we use a model-selection lemma from|Anthony and Bartlett [[1999].

Lemma B.6. (Lemma 15.6 inlAnthony and Bartleti [|1999]) Suppose Pr is a probability distribution
and
{E(a1,09,0) : 0 < ag,a0,0 < 1}

is a set of events, such that

(i) Forall 0 < a < 1land0 < § <1,
Pr{E (a,, )} <6.

(ii) Forall0 < oy <a<az<1land0< 4 <6<1
E(Oél,Oé2751) C E(Oé,Oé,é).

Then for(0 < a,d < 1,
Pr U E (aa,a,da(l —a)) <46.

a€(0,1]
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Proof. Define the events

3 -1
E (a1,03,90) := EP’KL(RQX)Sag_l,Eth[A(h,X)]>\/?V(A)+O‘1 +1n(1/9)

n

By Proposition [B.3] they satisfy (i) of Lemma|[B.6land it is easy to see, that (ii) also holds. If we set
a = 1/2 the conclusion of Lemmal[B.6]becomes

Enp[A (h, X)) > \/a—?’zV (4) +2KL (P,Qx) +In (2K L (P,@x) /9)

n

O

To get a PAC-Bayesian bound analogous to Theorem [4.] (iv) we proceed similarly and obtain the
intermediate bound that for § > 0 with probability at least 1 — ¢ in X ~ p™ for all P such that
Epoplv(h)] <Vand KL(P,Qx) < K

3V (A) +K+1n(1/§))+b <CQ L2V +K+1n(1/§)) |

n n

Eh,\,p [A (h,X)] S 2\/V (62 +

Then we proceed as above, except that we have to use Lemma [B.6] twice, once with K and once
with nV. The result of this mechanical procedure is

Theorem B.7. For § > 0 with probability at least 1 — § in X ~ p" for all P

3 3
Epep [A (h,X)] < 2\/(2Eh~P o (h)] + 1/n) gzv(f:) +C N an(;;l) + c’

where

C=2KL(P,Qx)+1+In(2(KL(P,Qx)+1) (2 (nErp [v(h)] + 1)) /5).

C Table of notation

X space of data
W probability of data
n sample size
X generic member (21, ...,z,) € X"
X training set X = (X1, ..., X,,) ~ u”
H loss class (loss fctn. composed with hypotheses, i : X — [0, 00))
P(H) probability measures on H
T nonnegative a-priori measure on H
L(h) L(h)=E..,[h(x)], expected loss of h € H
L(h,X) | L(h,X)=(1/n)3" | h(X;), empirical loss of h € H
A (h,X) | L(h)— L(h,X), generalization gap
T Q Q:x € X" — Qx € P (H), stochastic algorithm
Qx (h) density w.r.t. m of Qx evaluated at h € H, Qx (h) = exp (Hg (h,x))
H H:H x X" — R, Hamiltonian
Z Z: X" 5 R, Z(x) = [, exp (H (h,x)) dr (h), partition function
Hg Hq (h,x) =H (h,x) —InZ (x) = InQx (h)
Sfj S{jx = (X1, o The1, Y, Th+1, ---, Tn, ), SUbstitution operator
D’; " (ij,y,f) (x)=f (S{jx) —f (Sfj/x), partial difference operator
kl(p,q) kl(p,q) = pln % +(1-=p)ln %’ re. entropy of Bernoulli variables
KL (p,v) | [ (1n %) dp, KL-divergence of p.-measures p and v
Il Euclidean norm on RP.
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