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1 Introduction

Concentration inequalities bound the probabilities that random quantities de-
viate from their average, median or otherwise typical values. They are at the
heart of empirical science and play an important role in the study of natural
and artificial learning systems.

The class of problems we study in this course can be described as follows:
suppose that (Ωi,Σi) are measurable spaces for i ∈ {1, ..., n} and that f is real
valued function defined on the product space Ω =

∏n
i=1 Ωi,

f : x = (x1, ..., xn) ∈ Ω 7→ f (x) ∈ R.

Now let X = (X1, ..., Xn) be a vector of independent random variables, where
Xi is distributed as µi in Ωi. For t > 0 and X′ iid to X we then want to give
bounds on the upwards deviation probability

Pr
X
{f (X)− E [f (X′)] > t}

in terms of the deviation t, the measures µi and properties of the function f .
Downward deviation bounds are then obtained by replacing f with −f . Usually
we will just write Pr {f − Ef > t} for the deviation probability above.

The first bounds of this type were given by Chebychev and Bienaimé [7] in
the late 19th century for additive functions

f (x) =

n∑
i=1

fi (xi) .

In this case great simplifications are possible, because then variance and moment
generating function are additive, which is not true in general. We will not
dwell on additive functions, but develop a method to handle more general, non-
additive functions. The bounds so derived will then give the most important
results for additive functions, like Hoeffding’s and Bennett’s inequality, as easy
corollaries.

The method we use, the so-called entropy method, is related to statistical
mechanics, as developed by Boltzmann [2] and Gibbs [9]. We give an exposition
of the method in Section 2 and compress it into a toolbox to derive concentration
inequalities.

In Section 3 we will then use this method to prove two classical concentration
inequalities, the bounded difference inequality and a generalisation of Bennett’s
inequality. As example applications we treat vector valued concentration and
generalization in empirical risk minimization, a standard problem in machine
learning theory.
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In Section 4 we adress more diffi cult problems. The bounded difference
inequality is used to prove the famous Gaussian concentration inequality of
Tsirelson, Ibragimov and Sudakov. We also give some more recent inequalities
which we apply to analyze the concentration of convex Lipschitz functions on
[0, 1]

n, or of the spectral norm of a random matrix.

In Section 5 we describe some of the more advanced techniques, namely
self-boundedness and decoupling. As examples we give sub-Gaussian lower tail
bounds for convex Lipschitz functions and derive an exponential inequality for
the suprema of empirical processes.

An appendix contains a summary of notation in tabular form.

I hope the course will stimulate interest in concentration inequalities. For
further study I very much recommend the monographs by Ledoux [10] and
Boucheron, Lugosi and Massart [5], and the excellent overview article by Mc-
Diarmid [13]. These works also have a much broader view on the subject than
the narrow perspective of this course.

We fix some conventions and notation:
If (Ω,Σ) is any measurable space A (Ω) will denote the algebra of bounded,

measurable real valued functions on Ω. When there is no ambiguity we often
just write A for A (Ω). Although we give some results for unbounded functions,
most functions for which we will prove concentration inequalities are assumed
to be measurable and bounded, that is f ∈ A. This assumption simplifies the
statement of our results, because it guarantees the existence of algebraic and
exponential moments and makes the basis of our arguments more transparent.
If (Ω,Σ, µ) is a probability space we write PrF = µ (F ) for F ∈ Σ, and

E [f ] =
∫

Ω
fdµ for f ∈ L1 [µ] and σ2 [f ] = E

[
(f − E [f ])

2
]
for f ∈ L2 [µ].

Wherever we use Pr, E or σ2 we assume that there is an underlying probability
space (Ω,Σ, µ). If we refer to other measures than µ, then we identify them
with corresponding subscripts. The notation which we introduce along the way
is also summarized in the appendix.

2 The entropy method

2.1 Markov’s inequality and exponential moment method

The most important tool in the proof of deviation bounds is Markov’s inequal-
ity, which we now introduce along with two important corollaries, Chebychev’s
inequality and the exponential moment method.

Theorem 1 (Markov inequality) Let f ∈ L1 [µ], f ≥ 0 and t > 0. Then

Pr {f > t} ≤ E [f ]

t
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Proof. Since f ≥ 0 and t > 0 we have 1f>t ≤ f/t and therefore

Pr {f > t} = E [1f>t] ≤ E [f/t] =
E [f ]

t
.

Corollary 2 (Chebychev inequality) Let f ∈ L2 [µ] and t > 0. Then

Pr {|f − E [f ]| > t} = Pr
{

(f − E [f ])
2
> t2

}
≤
E
[
(f − E [f ])

2
]

t2
=
σ2 (f)

t2

To use Chebychev’s inequality we need to bound the variance σ2 (f). If f is
a sum of independent components the variance is just the sum of the component
variances, but this doesn’t work for general functions.The idea of Chebychev’s

inequality obviously extends to other even centered moments E
[
(f − E [f ])

2p
]
.

For our purpose the most important corollary of Markov’s inequality is the
exponential moment method, an idea appearantly due to Bernstein [1].

Corollary 3 (exponential moment method) Let f ∈ A, β ≥ 0 and t > 0. Then

Pr {f > t} = Pr
{
eβf > eβt

}
≤ e−βtE

[
eβf
]
.

To use this we need to bound the quantity E
[
eβf
]
and to optimize the right

hand side above over β. We call E
[
eβf
]
the partition function, denoted Zβf =

E
[
eβf
]
. Bounding the partition function (or its logarithm) is the principal

problem in the derivation of exponential tail bounds.
If f is a sum of independent components then the partition function is the

product of the partition functions corresponding to these components, and its
logarithm (the moment generating function) is additive. This is a convenient
basis to obtain deviation bounds for sums, but it does not immediately extend
to general non-additive functions, which are the object of this course. The
approach taken here, the entropy method, balances simplicity and generality.

2.2 Entropy and concentration

For the remainder of this section we take the function f ∈ A as fixed. We could
interpret the points x ∈ Ω as possible states of a physical system and f as the
negative energy (or Hamiltonian) function, so that −f (x) is the system’s energy
in the state x. The measure µ then models an a priori probability distribution
of states in the absence of any constraining information. We will define another
probability measure on Ω, with specified expected energy, but with otherwise
minimal assumptions.

If ρ is a function on Ω, ρ ≥ 0 and E [ρ] = 1, recall that the Kullback-Leibler
divergence KL (ρdµ, dµ) of ρdµ to dµ is defined as

KL (ρdµ, dµ) = E
[
ρ ln

ρ1

1

]
= E [ρ ln ρ] .
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Theorem 4 For all f ∈ A, β ∈ R

sup
ρ
βE [ρf ]− E [ρ ln ρ] = lnE

[
eβf
]
,

where the supremum is over all nonnegative measurable functions ρ on Ω satis-
fying E [ρ] = 1.
The supremum is attained for the density

ρβf = eβf/E
[
eβf
]
.

Proof. Obviously we can assume β = 1. Let ρ ≥ 0 satisfy E [ρ] = 1, so that
ρdµ is a probability measure and g ∈ A 7→ Eρ [g] := E [ρg] an expectation
functional. Let φ (x) = 1/ρ (x) if ρ (x) > 0 and φ (x) = 0 if ρ (x) = 0. Then
E [ρ ln ρ] = −E [ρ lnφ]E = −Eρ [lnφ] and with Jensen’s inequality

E [ρf ]− E [ρ ln ρ] = Eρ [f + lnφ]

= ln exp (Eρ [f + lnφ])

≤ lnEρ [exp (f + lnφ)]

= lnEρ
[
φef
]

= lnE
[
ρφef

]
= lnE [1ρ>0e

g]

≤ lnE [eg] .

On the other hand

E
[
ρff

]
− E

[
ρf ln ρf

]
=
E
[
fef
]

E [ef ]
−
E
[
ef ln

(
ef/E

[
ef
])]

E [ef ]
= lnE

[
ef
]
.

The result exhibits the functions f ∈ A 7→ lnE
[
ef
]
and ρ 7→ E [ρ ln ρ] as a

pair of convex conjugates.
The maximizing probability measure dµβf = ρβfdµ = eβfdµ/E

[
eβf
]
is

called the thermal measure in statistical mechanics, sometimes also the canonical
ensemble. It describes a system in thermal equilibrium with a heat reservoir at
temperature T ≈ 1/β. The corresponding expectation functional

Eβf [g] =
E
[
geβf

]
E [eβf ]

= Z−1
βf E

[
geβf

]
, for g ∈ A

Is called the thermal expectation. The normalizing quantity Zβf = E
[
eβf
]
is

the partition function already introduced above. For any constant c we have
the obvious and important identity Eβ(f+c) [g] = Eβf [g].

The value of the function ρ 7→ E [ρ ln ρ] at the thermal density ρβf = Z−1
βf e

βf

is called the canonical entropy or simply entropy,

Entf (β) = E
[
ρβf ln ρβf

]
= βEβf [f ]− lnZβf . (1)
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Note that Ent−f (β) = Entf (−β), a simple but very useful fact.
Suppose that ρ is any probability density on Ω giving the same expected

value for the energy as ρβf , so that E [ρf ] = Eβf [f ] then

0 ≤ KL
(
ρdµ, Z−1

βf e
βfdµ

)
= E [ρ ln ρ]− βE [ρf ] + lnZβf

= KL (ρdµ, dµ)−KL
(
Z−1
βf e

βfdµ, dµ
)
.

The thermal measure dµβf = Z−1
βf e

βfdµ therefore minimizes the information
gain relative to the a priori measure dµ, given the expected value of f . For a
fixed value of the internal energy −Eβf [f ], the choice of the canonical ensemble
is an admission of maximal ignorance.

The connection of entropy and concentration is expressed in the following
result.

Theorem 5 For f ∈ A and any β ≥ 0 we have

lnE
[
eβ(f−Ef)

]
= β

∫ β

0

Entf (γ)

γ2
dγ

and, for t ≥ 0,

Pr {f − Ef > t} ≤ inf
β≥0

exp

(
β

∫ β

0

Entf (γ)

γ2
dγ − βt

)
.

Proof. For β 6= 0 define a function

Af (β) =
1

β
lnZβf =

1

β
lnE

[
eβf
]
. (2)

By l’Hospital’s rule we have limβ→0Af (β) = E [f ], so Af extends continuously
to R by setting Af (0) = E [f ]. Also

A′f (β) =
1

β
Eβf [f ]− 1

β2 lnZβf = β−2Entf (β) .

By the fundamental theorem of calculus

lnE
[
eβ(f−Ef)

]
= lnZβf − βE [f ] = β (Af (β)−Af (0))

= β

∫ β

0

A′f (γ) dγ = β

∫ β

0

Entf (γ)

γ2
dγ,

which is the first inequality. Then by Markov’s inequality

Pr {f − Ef > t} ≤ e−βtE
[
eβ(f−Ef)

]
≤ exp

(
β

∫ β

0

Entf (γ)

γ2
dγ − βt

)
.
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In statistical physics the quantity Af (β) as defined in (2) is called the free
energy corresponding to the Hamiltonian (energy function) H = −f and tem-
perature T ≈ β−1. Dividing (1) by β and writing U = Eβf [f ], we recover the
classical thermodynamic relation

A = U − T Ent,

which describes the macroscopically available energy A as the difference between
the internal energy U and an energy portion T Ent, which is inaccessible due
to ignorance of the microscopic state.

2.3 Entropy and energy fluctuations

The thermal variance of a function g ∈ A is just the variance of g relative to
the thermal expectation. It is denoted σ2

βf (g) and defined by

σ2
βf (g) = Eβf

[
(g − Eβf [g])

2
]

= Eβf
[
g2
]
− (Eβf [g])

2
.

For constant c we have σ2
β(f+c) [g] = σ2

βf [g].

The proof of the following lemma consists of straightforward calculations,
which I recommend as an exercise to familiarize oneself with thermal measure,
expectation and variance.

Lemma 6 The following formulas hold for f ∈ A
1. d

dβ (lnZβf ) = Eβf [f ].
2. If h : β 7→ h (β) ∈ A is differentiable and (d/dβ)h (β) ∈ A then

d

dβ
Eβf [h (β)] = Eβf [h (β) f ]− Eβf [h (β)]Eβf [f ] + Eβf

[
d

dβ
h (β)

]
.

3. d
dβEβf

[
fk
]

= Eβf
[
fk+1

]
− Eβf

[
fk
]
Eβf [f ] .

4. d2

dβ2
(lnZβf ) = d

dβEβf [f ] = σ2
βf [f ] .

Proof. 1. is immediate and 2. a straightforward computation. 3. and 4. are
immediate consequences of 1. and 2.

Since the members of A are bounded it follows from 2. that for f, g ∈ A the
functions β 7→ Eβf [g] and β 7→ σ2

βf [g] are C∞.
The thermal variance of f itself corresponds to energy fluctuations. The

next theorem represents entropy as a double integral of such fluctuations. The
utility of this representation to derive concentration results has been noted by
David McAllester [12].
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Theorem 7 We have for β > 0

Entf (β) =

∫ β

0

∫ β

t

σ2
sf [f ] ds dt.

Proof. Using the previous lemma and the fundamental theorem of calculus we
obtain the formulas

βEβf [f ] =

∫ β

0

Eβf [f ] dt =

∫ β

0

(∫ β

0

σ2
sf [f ] ds+ E [f ]

)
dt

and

lnZβf =

∫ β

0

Etf [f ] dt =

∫ β

0

(∫ t

0

σ2
sf [f ] ds+ E [f ]

)
dt,

which we subtract to obtain

Entf (β) = βEβf [f ]− lnZβf =

∫ β

0

(∫ β

0

σ2
sf [f ] ds−

∫ t

0

σ2
sf [f ] ds

)
dt

=

∫ β

0

(∫ β

t

σ2
sf [f ] ds

)
dt.

2.4 Product spaces and conditional operations

We now set Ω =
∏n
k=1 Ωk and dµ =

∏n
k=1 dµk, where each µk is the probability

measure representing the distribution of some variable Xk in the space Ωk,
where all the Xk are assumed to be mutually independent.
With Ak we denote the subalgebra of those functions f ∈ A, which are

independent of the k-th argument. To effi ciently deal with operations performed
on individual arguments of functions in A we need some special notation.
Now let k ∈ {1, ..., n} and y ∈ Ωk. If Ξ is any set and F is any function

F : Ω→ Ξ the substitution operator Sky acts on F by(
SkyF

)
(x1, ..., xn) = F (x1, ..., xk−1, y, xk+1, ..., xn) ,

so the k-th argument is simply replaced by y. Note that
(
SkyF

)
(x1, ..., xn) =

F
(
Sky (x1, ..., xn)

)
, if (x1, ..., xn) is viewed as the identity function on Ω. In

general Sky (F ◦G) = F ◦Sky (G) and when restricted to functions in the algebra
A the operator Sky is a homomorphism (linear and multiplicative). Since for
f ∈ A the function Skyf is independent of xk (which had been replaced by y)
we see that Sky is also a projection of A onto Ak.
For k ∈ {1, ..., n} and y, y′ ∈ Ωk we define the difference operator Dk

y,y′ :
A → Ak by

Dk
y,y′f = Skyf − Sky′f for f ∈ A.
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Clearly Dk
y,y′ annihilates Ak. The operator rk : A → Ak, defined by rk (f) =

supy,y′∈Ωk
Dk
y,y′f , is called the conditional range.

Given the measures µk and k ∈ {1, ..., n} we define another operator Ek :
A → Ak by

Ekf = Ey∼µk
[
Skyf

]
=

∫
Ωk

Skyf dµ (y) .

The operator Ek is the expectation conditional to all variables with indices
different to k. Ek is a linear projection onto Ak. Also the Ek commute amongst
each other, and for h ∈ A and g ∈ Ak we have

E [[Ekh] g] = E [Ek [hg]] = E [hg] . (3)

Replacing the operator E by Ek leads to the definition of conditional ther-
modynamic quantities, all of which are now members of the algebra Ak:

• The conditional partition function Zk,βf = Ek
[
eβf
]
,

• The conditional thermal expectation Ek,βf [g] = Z−1
k,βfEk

[
geβf

]
for g ∈ A,

• The conditional entropy Entk,f (β) = βEk,βf [f ]− lnZk,βf ,

• The conditional thermal variance σ2
k,βf [g] = Ek,βf

[
(g − Ek,βf [g])

2
]
for

g ∈ A. As β → 0 this becomes

• The conditional variance σ2
k [g] = Ek

[
(g − Ek [g])

2
]
for g ∈ A.

The previously established relations hold also for the corresponding condi-
tional quantities, in particular the conclusion of Theorem 7

Entk,f (β) =

∫ β

0

∫ β

t

σ2
k,sf [f ] ds dt.

The following lemma will also be used frequently.

Lemma 8 For any f, g ∈ A, k ∈ {1, ..., n}, β ∈ R

Eβf [Ek,βf [g]] = Eβf [g] .

Proof. Using E [Ek [h] g] = E [hEk [g]]

Eβf [Ek,βf [g]] = Z−1
βf E

[
Ek
[
geβf

] eβf

Ek [eβf ]

]
= Z−1

βf E

[
geβfEk

[(
eβf

Ek [eβf ]

)]]
= Z−1

βf E
[
geβf

]
= Eβf [g] .

9



2.5 The subadditivity of entropy

In the non-interacting case, when the energy function f is a sum, f =
∑
fk, it

is easily verified that Entk,f (β) (x) = Entk,f (β) is independent of x and that

Entf (β) =

n∑
k=1

Entk,f (β) .

Equality no longer holds in the interacting, non-linear case, but there is a subad-
ditivity property which is suffi cient for the purpose of concentration inequalities:
The total entropy is no greater than the thermal average of the sum of the

conditional entropies.
In 1975 Elliott Lieb [11] gave a proof of this result, which was probably known

some time before, at least in the classical setting relevant to our arguments.

Lemma 9 Let h, g > 0 be bounded measurable functions on Ω. Then for any
expectation E

E [h] ln
E [h]

E [g]
≤ E

[
h ln

h

g

]
.

Proof. Define an expectation functional Eg by Eg [h] = E [gh] /E [g]. The
function Φ (t) = t ln t is convex for positive t, since Φ′′ = 1/t > 0. Then

Φ

(
Eg

[
h

g

])
=
E [h]

E [g]
ln
E [h]

E [g]
.

Thus, by Jensen’s inequality,

E [h] ln
E [h]

E [g]
= E [g]Eg

[
h

g

]
lnEg

[
h

g

]
= E [g] Φ

(
Eg

[
h

g

])
≤ E [g]Eg

[
Φ

(
h

g

)]
= E

[
h ln

h

g

]
.

Lemma 10 Let ρ ∈ A, ρ > 0. Then

E

[
ρ ln

ρ

E [ρ]

]
≤
∑
k

E

[
ρ ln

ρ

Ek [ρ]

]
Proof. Write Ek [.] = E1E2...Ek [.] with E0 being the identity map on A and
En = E. We expand

ρ

E [ρ]
=
E0 [ρ]

E1 [ρ]

E1 [ρ]

E2 [ρ]
...
En−1 [ρ]

En [ρ]
=

n∏
k=1

Ek−1 [ρ]

Ek−1 [Ek [ρ]]
.
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We get from Lemma 9, using E
[
Ek−1 [.]

]
= E [.] ,

E

[
ρ ln

ρ

E [ρ]

]
= E

[
Ek−1 [ρ] ln

n∏
k=1

Ek−1 [ρ]

Ek−1 [Ek [ρ]]

]

≤
∑
k

E

[
Ek−1

[
ρ ln

ρ

Ek [ρ]

]]
=
∑
k

E

[
ρ ln

ρ

Ek [ρ]

]

Theorem 11

Entf (β) ≤ Eβf

[
n∑
k=1

Entk,f (β)

]
(4)

Proof. Set ρ = eβf in Lemma 10 to get

Entf (β) = Z−1
βf E

[
eβf ln

eβf

E [eβf ]

]
≤ Z−1

βf

∑
k

E

[
eβf ln

eβf

Ek [eβf ]

]
=

∑
k

Eβf
[
βf − lnEk

[
eβf
]]

= Eβf

[∑
k

Entk,f (β)

]
,

where we used Lemma 8 in the last identity.

2.6 Summary of results

The results established sofar (Theorem 5, Theorem 11 and Theorem 7) already
constitute a convenient toolbox to prove a number of interesting concentration
inequalities. Here is a summary:

Theorem 12 For f ∈ A and β > 0 we have

Pr {f − Ef > t} ≤ exp

(
β

∫ β

0

Entf (γ)

γ2
dγ − βt

)
(TB1)

lnE
[
eβ(f−Ef)

]
= β

∫ β

0

Entf (γ)

γ2
dγ (TB2)

Entf (β) ≤ Eβf

[
n∑
k=1

Entk,f (β)

]
(TB3)

Entf (β) =

∫ β

0

∫ β

t

σ2
sf [f ] ds dt (TB4)

Entk,f (β) =

∫ β

0

∫ β

t

σ2
k,sf [f ] ds dt (TB5)
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3 First applications of the entropy method

We now develop some consequences of Theorem 12. First we indicate how it
implies the Efron-Stein inequality, a general bound on the variance. Then we
continue with the derivation of the bounded difference inequality, one of the
simplest concentration inequalities, and perhaps the most useful one. Then we
give a Bennett-Bernstein type inequality.

3.1 The Efron-Stein inequality

Combining the fluctation representations (TB4) and (TB5) with the subaddi-
tivity (TB3) of entropy and dividing by β2 we obtain

1

β2

∫ β

0

∫ β

t

σ2
sf [f ] ds dt ≤ Eβf

[
n∑
k=1

1

β2

∫ β

0

∫ β

t

σ2
k,sf [f ] ds dt.

]

Using the continuity properties of β 7→ Eβf [g] and β 7→ σ2
βf [f ], which follow

from Lemma 6 we can take the limit as β → 0 and multiply by 2 to obtain

σ2 [f ] ≤ E
[∑

k

σ2
k [f ]

]
= E

[
Σ2 (f)

]
, (5)

where we introduced the notation Σ2 (f) =
∑
k σ

2
k [f ] for the sum of conditional

variances.
(5) is the famous Efron-Stein-Steele inequality [16]. It is an easy exercise to

provide the details of the above limit process and to extend the inequality to
general functions f ∈ L2 [µ] by approximation with a sequence of truncations.

3.2 The bounded difference inequality

We start with the observation that the variance of a real random variable is
never greater than a quarter of the square of its range.

Lemma 13 If f ∈ A satisfies a ≤ f ≤ b then

σ2 (f) ≤ (b− a)
2

4

Proof.

σ2 (f) = E [(f − E [f ]) f ] = E [(f − E [f ]) (f − a)]

≤ E [(b− E [f ]) (f − a)] = (b− E [f ]) (E [f ]− a)

≤ (b− a)
2

4
.

To see the last inequality use elementary calculus to find the maximal value of
the function t→ (b− t) (t− a).

12



The bounded difference inequality bounds the deviation of a function from
its mean in terms of the sum of squared conditional ranges, which is the operator
R2 : A → A defined by

R2 (f) =

n∑
k=1

rk (f)
2

=

n∑
k=1

sup
y,y′∈Ωk

(
Dk
y,y′f

)2
.

Theorem 14 (Bounded difference inequality) For f ∈ A and t > 0

Pr {f − Ef > t} ≤ exp

(
−2t2

supx∈ΩR
2 (f) (x)

)
.

Proof. Applied to the conditional thermal variance Lemma 13 gives

σ2
k,sf [f ] ≤ 1

4
sup

y,y′∈Ωk

(
Dk
y,y′f

)2
=

1

4
rk (f)

2
,

so combining the subadditivity of entropy (TB3) and the fluctuation represen-
tation (TB4) gives

Entf (γ) ≤ Eγf

[
n∑
k=1

Entk,f (γ)

]
= Eγf

[
n∑
k=1

∫ γ

0

∫ γ

t

σ2
k,sf [f ] ds dt

]

≤ 1

4
Eγf

[∫ γ

0

∫ γ

t

n∑
k=1

rk (f)
2

]
ds dt

=
γ2

8
Eγf

[
R2 (f)

]
.

Bounding the thermal expectation Eγf by the supremum over x ∈ Ω we obtain
from the tail-bound (TB1) that for all β > 0

Pr {f − Ef > t} ≤ exp

(
β

∫ β

0

Entf (γ) dγ

γ2
− βt

)

≤ exp

(
β2

8
sup
x∈Ω

R2 (f) (x)− βt
)
.

Substitution of the minimizing value β = 4t/
(
supx∈ΩR

2 (f) (x)
)
gives the con-

clusion.

It is important to realize, that the conditional range rk (f) is a function
in Ak and may depend on all xi except xk. The sum

∑n
k=1 rk (f)

2 may thus
depend on all the xi. It is therefore a very pleasant feature that the supremum
over x is taken outside the sum. In the literature one often sees the following
weaker result.

13



Corollary 15 For f ∈ A and t > 0

Pr {f − Ef > t} ≤ exp

(
−2t2∑n

k=1 supx∈Ω rk (f)
2

(x)

)
.

If f is a sum f =
∑
kXk, then r2

k is independent of x and the two results
are equivalent. In this case we obtain the well known Hoeffding inequality .

Corollary 16 (Hoeffding’s inequality) Let Xk be real random variables ak ≤
Xk ≤ bk. Then

Pr

{∑
k

(Xk − E [Xk]) > t

}
≤ exp

(
−2t2∑n

k=1 (bk − ak)
2

)
.

In returning to the general case of non-additive functions, it is remarkable
that for many applications the following "little bounded difference inequality",
which is yet weaker than Corollary 15, seems to be suffi cient.

Corollary 17 For f ∈ A and t > 0

Pr {f − Ef > t} ≤ exp

(
−2t2

nc2

)
,

where
c = max

k
sup

x∈Ω,y,y′∈Ωk

Dk
y,y′f (x) .

3.3 Vector valued concentration

Suppose Xi are independent random variables with values in a normed space
B such that EXi = 0 and ‖Xi‖ ≤ ci. Let Ωi = {y ∈ B : ‖y‖ ≤ ci} and define
f :
∏n
i=1 Ωi → R by

f (x) =

∥∥∥∥∥∑
i

xi

∥∥∥∥∥ .
Then by the triangle inequality, for y, y′ with ‖y‖ , ‖y′‖ ≤ ck

Dk
y,y′f (x) =

∥∥∥∥∥∑
i

Sky (x)i

∥∥∥∥∥−
∥∥∥∥∥∑

i

Sky′ (x)i

∥∥∥∥∥
≤

∥∥∥∥∥∑
i

Sky (x)i −
∑
i

Sky′ (x)i

∥∥∥∥∥ = ‖y − y′‖

≤ 2ck,

14



so R2 (f) (x) ≤ 4
∑
i c

2
i . It follows from Corollary 15 that

Pr {f − E [f ] > t} ≤ exp

(
−t2

2
∑
i c

2
i

)
,

or that for δ > 0 with probability at least 1− δ in (X1, ..., Xn)∥∥∥∥∥∑
i

Xi

∥∥∥∥∥ ≤ E
∥∥∥∥∥∑

i

Xi

∥∥∥∥∥+

√
2
∑
i

c2i ln (1/δ). (6)

If B is a Hilbert space we can bound E ‖
∑
iXi‖ ≤

√∑
iE
[
‖Xi‖2

]
by Jensen’s

inequality and if all the Xi are iid we get with probability at least 1− δ

∥∥∥∥∥ 1

n

∑
i

Xi

∥∥∥∥∥ ≤
√√√√E

[
‖X1‖2

]
n

+ c1

√
2 ln (1/δ)

n
(7)

3.4 Rademacher complexities and generalization

Now let X be any measurable space and F a countable class of functions f :
X → [0, 1] and X = (X1, ..., Xn) be a vector of iid random variables with values
in X .
Empirical risk minimization really wants to find f ∈ F with minimal risk

E [f (X)], but, as the true distribution of X is unknown, it has to be content
with minimizing the empirical surrogate

1

n

∑
i

f (Xi) .

One way to justify this method is by giving a bound on the uniform estimation
error

sup
f∈F

1

n

∣∣∣∣∣∑
i

f (Xi)− E [f (X)]

∣∣∣∣∣ .
The vector space

B =

{
g : F → R : sup

f∈F
|g (f)| <∞

}
becomes a normed space with norm ‖g‖ = supf∈F |g (f)| . For each Xi define
X̂i ∈ B by X̂i (f) = f (Xi) − E [f (Xi)]. Then the X̂i are zero mean random

variables in B satisfying
∥∥∥X̂i

∥∥∥ ≤ 1, and (6) of the preceding section gives with

probability at least 1− δ

sup
f∈F

∣∣∣∣∣ 1n∑
i

f (Xi)− E [f (Xi)]

∣∣∣∣∣ ≤ 1

n
E sup
f∈F

∣∣∣∣∣∑
i

f (Xi)− E [f (Xi)]

∣∣∣∣∣+
√

2 ln (1/δ)

n
.
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The expectation term on the right hand side can be bounded in terms of
Rademacher complexity. This is the function Rad: F × Xn on defined as

Rad (F ,x) =
2

n
Eε sup

f∈F

∣∣∣∣∣∑
i

εif (xi)

∣∣∣∣∣ ,
where the ε = (ε1, ..., εn) are vectors of independent Rademacher variables which
are uniformly distributed on {−1, 1}. We have, with X ′i iid to Xi

1

n
E sup
f∈F

∣∣∣∣∣∑
i

f (Xi)− E [f (Xi)]

∣∣∣∣∣ ≤ 1

n
EXX′ sup

f∈F

∣∣∣∣∣∑
i

f (Xi)− f (X ′i)

∣∣∣∣∣
=

1

n
EXX′ sup

f∈F

∣∣∣∣∣∑
i

εi (f (Xi)− f (X ′i))

∣∣∣∣∣ for any ε ∈ {−1, 1}n

=
1

n
EXX′Eε sup

f∈F

∣∣∣∣∣∑
i

εi (f (Xi)− f (X ′i))

∣∣∣∣∣
≤ 2

n
EXEε sup

f∈F

∣∣∣∣∣∑
i

εif (Xi)

∣∣∣∣∣
= EXRad (F ,X) .

Now we use the bounded difference inequality again to bound the deviation of
Rad(F , .) from its expectation. We have, again using the triangle inequality,

Dk
y,y′Rad (F ,x) =

2

n
Eε

[
sup
f∈F

∣∣∣∣∣∑
i

εiS
k
yf (xi)

∣∣∣∣∣− sup
f∈F

∣∣∣∣∣∑
i

εiS
k
y′f (xi)

∣∣∣∣∣
]

≤ 2

n
Eε

[
sup
f∈F
|εi (f (y)− f (y′))|

]
≤ 2

n

and thus obtain

Pr {E [Rad (F , .)] > Rad (F , .) + t} ≤ e−nt
2/2,

or, for every δ > 0 with probability at least 1− δ

E [Rad (F ,X)] ≤ Rad (F ,X) +

√
2 ln (1/δ)

n
. (8)

By a union bound we conclude that with probability at least 1− δ

sup
f∈F

∣∣∣∣∣ 1n∑
i

f (Xi)− E [f (Xi)]

∣∣∣∣∣ ≤ Rad (F ,X) + 2

√
2 ln (2/δ)

n
.
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3.5 The Bennett and Bernstein inequalities

The proof of the bounded difference inequality relied on bounding the thermal
variance σ2

k,βf (f) uniformly in β, using the constraints on the conditional range
of f . We now consider the case, where we only use one constraint on the ranges,
say f − Ek [f ] ≤ 1, but we use information on the conditional variances. This
leads to a Bennett type inequality as in [13, Theorem 3.8]. Recall the notation
for the sum of conditional variances Σ2 (f) :=

∑
σ2
k (f). Again we start with a

bound on the thermal variance.

Lemma 18 Assume f − Ef ≤ 1. Then for β > 0

σ2
βf (f) ≤ eβσ2 (f)

Proof.

σ2
βf (f) = σ2

β(f−Ef) (f − Ef) = Eβ(f−Ef)

[
(f − Ef)

2
]
−
(
Eβ(f−Ef) [f − Ef ]

)2
≤ Eβ(f−Ef)

[
(f − Ef)

2
]

=
E
[
(f − Ef)

2
eβ(f−Ef)

]
E
[
eβ(f−Ef)

]
≤ E

[
(f − Ef)

2
eβ(f−Ef)

]
use Jensen on denominator

≤ eβE
[
(f − Ef)

2
]
use hypothesis

Next we bound the entropy Entf (β).

Lemma 19 Assume that f − Ekf ≤ 1 for all k ∈ {1, ..., n}. Then for β > 0

Entf (β) ≤
(
βeβ − eβ + 1

)
Eβf

[
Σ2 (f)

]
.

Proof. Using the first conclusion of Theorem 12 and the previous lemma we
get

Entf (β) ≤ Eβf

[
n∑
k=1

∫ β

0

∫ β

t

σ2
k,sf [f ] ds dt

]
≤
∫ β

0

∫ β

t

esds dt Eβf
[
Σ2 (f)

]
.

The conclusion follows from the elementary formula∫ β

0

∫ β

t

esds dt =

∫ β

0

(
eβ − et

)
dt = βeβ − eβ + 1.

We need one more technical Lemma.

Lemma 20 For x ≥ 0

(1 + x) ln (1 + x)− x ≥ 3x2/ (6 + 2x) .
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Proof. We have to show that

f1 (x) :=
(
6 + 8x+ 2x2

)
ln (1 + x)− 6x− 5x2 ≥ 0.

Since f1 (0) = 0 and f ′1 (x) = 4f2 (x) with f2 (x) := (2 + x) ln (1 + x) − 2x, it
is enough to show that f2 (x) ≥ 0. But f2 (0) = 0 and f ′2 (x) = (1 + x)

−1
+

ln (1 + x)− 1, so f ′2 (0) = 0, but f ′′2 (x) = x (1 + x)
−2 ≥ 0, so f2 (x) ≥ 0.

Now we can prove our version of Bennett’s inequality.

Theorem 21 Assume f−Ekf ≤ 1,∀k. Let t > 0 and denote V = supx∈Ω Σ2 (f) (x).
Then

Pr {f − E [f ] > t} ≤ exp
(
−V

((
1 + tV −1

)
ln
(
1 + tV −1

)
− tV −1

))
≤ exp

(
−t2

2V + 2t/3

)
.

Proof. Fix β > 0. We define the real function

ψ (t) = et − t− 1, (9)

which arises from deleting the first two terms in the power series expansion of
the exponential function and observe that∫ β

0

γeγ − eγ + 1

γ2
dγ = β−1

(
eβ − β − 1

)
= β−1ψ (β) ,

because (d/dγ)
(
γ−1 (eγ − 1)

)
= γ−2 (γeγ − eγ + 1) and limγ→0 γ

−1 (eγ − 1) =
1. Theorem 12 and Lemma 19 combined with a uniform bound then give

lnEeβ(f−Ef) = β

∫ β

0

Entf (γ) dγ

γ2

≤ β

(∫ β

0

γeγ − eγ + 1

γ2
dγ

)
sup
x∈Ω

Σ2 (f) (x) = ψ (β)V.

So by Markov’s inequality we have for any β > 0 that Pr {f − E [f ] > t} ≤
exp (ψ (β)V − βt). Substitution of β = ln

(
1 + tV −1

)
gives the first inequality,

the second follows from Lemma 20.
Observe that f is assumed bounded above by the hypotheses of the theorem.

The existence of exponential moments E
[
eβf
]
is needed only for β ≥ 0, so the

assumption f ∈ A can be dropped in this case.
If f is additive the theorem reduces to the familiar Bennett and Bernstein

inequalities.

Corollary 22 Let Xk be real random variables Xk ≤ E [Xk] + 1 and let V =∑
k σ

2 (Xk). Then

Pr

{∑
k

(Xk − E [Xk]) > t

}
≤ exp

(
−V

((
1 + tV −1

)
ln
(
1 + tV −1

)
− tV −1

))
≤ exp

(
−t2

2V + 2t/3

)
.
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By rescaling both Theorem 21 and its corollary can be applied to functions
satisfying f − Ek [f ] < b. Then Bernstein’s inequality becomes

Pr {f − E [f ] > t} ≤ exp

(
−t2

2 supx∈Ω Σ2 (f) (x) + 2bt/3

)
.

3.6 Vector valued concentration revisited

We look again at the situation of section 3.3. Suppose again that the Xi are
independent zero mean random variables with values in normed space, which
we now assume to be a Hilbert-space H, but that now we have a uniform bound
‖Xi‖ ≤ c. Again we define f : {y ∈ H : ‖y‖ ≤ c}n → R by f (x) = ‖

∑
i xi‖ and

observe that for y, y′ ∈ H, Dk
y,y′f (x) ≤ ‖y − y′‖. This implies that f−Ek [f ] ≤

2c and also

σ2
k (f) =

1

2
E(y,y′)∼µ2k

(
Dk
y,y′f (x)

)2 ≤ 1

2
E(y,y′)∼µ2k ‖y − y

′‖2 = E ‖Xk‖2 .

Thus Σ2 (f) ≤
∑
iE ‖Xi‖2 and by Bernstein’s inequality, Theorem 21,

Pr {f − E [f ] > t} ≤ exp

(
−t2

2
∑
iE ‖Xi‖2 + 4ct/3

)
,

or that for δ > 0 with probability at least 1− δ in (X1, ..., Xn)∥∥∥∥∥∑
i

Xi

∥∥∥∥∥ ≤
√∑

i

E
[
‖Xi‖2

]
+

√
2
∑
i

E ‖Xi‖2 ln (1/δ) + 4c ln (1/δ) /3,

where we again used Jensen’s inequality to bound E ‖
∑
iXi‖. If all the Xi are

iid we get with probability at least 1− δ

∥∥∥∥∥ 1

n

∑
i

Xi

∥∥∥∥∥ ≤
√√√√E

[
‖X1‖2

]
n

(
1 +

√
2 ln (1/δ)

)
+

4c ln (1/δ)

2n
.

If the variance E
[
‖X1‖2

]
is small and n is large, this is much better than the

bound (7), which we got from the bounded difference inequality.
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4 Inequalities for Lipschitz functions and dimen-
sion free bounds

We now prove some more advanced concentration inequalities. First we will
use the bounded difference inequality to prove a famous sub-gaussian bound for
Lipschitz functions of independent standard normal variables. We then derive
an exponential Efron-Stein inequality which allows to prove a similar result for
convex Lipschitz functions on [0, 1]

n. We also obtain a concentration inequality
for the spectral norm of a random matrix, which is independent of the size of
the matrix.

4.1 Gaussian concentration

The advantage of the bounded difference inequality, Theorem 14, over its sim-
plified Corollary 15 is the supremum over x outside the sum over k. This allows
us to prove the following powerful Gaussian concentration inequality (Tsirelson-
Ibragimov-Sudakov inequality, Theorem 5.6 in [5]). We assume Ωk = R and µk
to be the distribution of a standard normal variable, and we require f to be an
L-Lipschitz function, which means that for all x,x′ ∈ Rn

f (x)− f (x′) ≤ L ‖x− x′‖ ,

where ‖.‖ is the Euclidean norm on Rn.

Theorem 23 Let f : Rn → R be L-Lipschitz and let X = (X1, . . . , Xn) be a
vector of independent standard normal variables. Then for any s > 0

Pr {f (X) > Ef (X) + s} ≤ e−s
2/2L2 .

Note that the function f is not assumed to be bounded on Rn.

Proof. The idea of the proof is to use the central limit theorem to approxi-
mate the X by appropriately scaled Rademacher sums hK (ε) and to apply the
bounded difference inequality to f (hK (ε)).
By an approximation argument using convolution with Gaussian kernels of

decreasing width it suffi ces to prove the result if f is C∞ with
∣∣(∂2/x2

i

)
f (x)

∣∣ ≤
B for all x ∈ Rn and i ∈ {1, ..., n}, where B is a finite, but potentially very
large, constant. For K ∈ N define a function hK : {−1, 1}K → R, a vector
valued function hK : {−1, 1}Kn → Rn and a function GK : {−1, 1}Kn → R by

hK (ε) =
1√
K

K∑
k=1

εk, for ε ∈ {−1, 1}K

hK (ε) = (hK (ε1) , ..., hK (εn)) for ε = (ε1, ..., εn) ∈ {−1, 1}Kn

GK = f (hK (ε)) for ε ∈ {−1, 1}Kn .
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We will use Theorem 14 on the function GK applied to Rademacher variables
ε.
Fix a configuration ε ∈{−1, 1}Kn and let x = (x1, ..., xn) = hK (ε). For

each i ∈ {1, ..., n} we introduce the real function fi (t) = Sitf (x). Since f is C∞

we have for any t ∈ R

fi (x+ t)− fi (x) = tf ′i (x) +
t2

2
f ′′i (s)

for some s ∈ R, and by the Lipschitz condition and the bound on |f ′′i |

(fi (x+ t)− fi (x))
2

= t2 (f ′i (x))
2

+ t3f ′i (x) f ′′i (s) +
t4

4
(f ′′i (s))

2

≤ t2 (f ′i (x))
2

+ |t|3 LB +
t4

4
B2.

Now fix a pair of indices (i, k) with i ∈ {1, ..., n} and k ∈ {1, ...,K} and
arbitrary values y, y′ ∈ {−1, 1} with y 6= y′. We want to bound

(
D

(i,k)
y,y′ GK (ε)

)2

.

Now either y or y′ is equal to εik, so either S
(i,k)
y GK (ε) or S(i,k)

y′ GK (ε) is equal
to GK (ε). Without loss of generality we assume the second. Furthermore
SkyhK (εi) and hK (εi) differ by at most 2/

√
K, so(

D
(i,k)
y,y′ GK (ε)

)2

=
(
f
(
x1, ..., S

k
yhK (εi) , ..., xn

)
− f (x1, ..., hK (εi) , ..., xn)

)2
=

(
fi

(
hK (εi)±

2√
K

)
− fi (hK (εi))

)2

≤ 4f ′i (hK (εi))
2

K
+

8LB

K3/2
+

4B2

K2
.

Now f ′i (hK (εi)) is just equal to (∂/∂xi) f (x), so∑
i

f ′i (hK (εi))
2 ≤ sup

x∈Rn
‖∇f (x)‖2 ≤ L2.

Thus

sup
ε

∑
k,i

sup
y,y′

(
D

(i,k)
y,y′ GK (ε)

)2

≤ 4L2 +
8nLB

K1/2
+

4nB2

K
.

Now let ε be Rademacher variables and ε′ iid to ε. From Theorem 14 we
conclude from f (hK (ε)) = GK (ε) that

Pr {f (hK (ε))− Ef (hK (ε′)) > s} ≤ exp

(
−s2

2L2 + 4nLB/K1/2 + 2nB2/K

)
.

The conclusion now follows from the central limit theorem since hK (ε) → X
weakly as K →∞.
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4.2 Exponential Efron Stein inequalities

We will now use the entropy method to derive some other "dimension free"
bounds of this type. We need the following very useful result.

Lemma 24 (Chebychev’s association inequality) Let g and h be real functions,
X a real random variable.
If g and h are either both nondecreasing or both nonincreasing then

E [g (X)h (X)] ≥ E [g (X)]E [h (X)] .

If either one of g or h is nondecreasing and the other nonincreasing then

E [g (X)h (X)] ≤ E [g (X)]E [h (X)] .

Proof. Let X ′ be a random variable iid to X. Then

E [g (X)h (X)]− E [g (X)]E [h (X)] =
1

2
E [(g (X)− g (X ′)) (h (X)− h (X ′))] .

Now if g and h are either both nondecreasing or both nonincreasing then

(g (X)− g (X ′)) (h (X)− h (X ′)) ,

is always nonnegative, because both factors always have the same sign, in the
other case it is always nonpositive.

We use this inequality to prove a bound on the thermal variance. First recall
that for two iid random variables X and X ′ we have

σ2 (X) =
1

2
EXX′

[
(X −X ′)2

]
=

1

2
EXX′

[
(X −X ′)2

1X>X′

]
+

1

2
EXX′

[
(X −X ′)2

1X<X′

]
= EXX′

[
(X −X ′)2

+

]
.

Lemma 25 Let 0 ≤ s ≤ β. Then

σ2
sf (f) ≤ Ex∼µβf

[
Ex′∼µ

[
(f (x)− f (x′))

2
+

]]
.

Proof. Let ψ be any real function. Lemma 6 (2) gives

d

dβ
Eβf [ψ (f)] = Eβf [ψ (f) f ]− Eβf [ψ (f)]Eβf [f ] . (10)

By Chebychev’s association inequality Eβf [ψ (f)] is nonincreasing (nondecreas-
ing) in β if ψ is nonincreasing (nondecreasing). Now define g : R2 → R by

g (s, t) = Ex∼µsf

[
Ex′∼µtf

[
(f (x)− f (x′))

2
1f(x)≥f(x′)

]]
,
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so that

σ2
sf (f) =

1

2
Ex∼µsf

[
Ex′∼µsf

[
(f (x)− f (x′))

2
]]

= g (s, s) .

Now for fixed x the function (f (x)− f (x′))
2

1f(x)≥f(x′) is nonincreasing in
f (x′), so g (s, t) is nonincreasing in t. On the other hand, for fixed x′, (f (x)− f (x′))

2
1f(x)≥f(x′)

is nondecreasing in f (x), so g (s, t) is nondecreasing in s (this involves exchang-
ing the two expectations in the definition of g (s, t)). So, since µ0f = µ, we get
from 0 ≤ s ≤ β that

σ2
sf (f) = g (s, s) ≤ g (β, 0) = Ex∼µβf

[
Ex′∼µ

[
(f (x)− f (x′))

2
+

]]
.

Here is another way to write the conclusion: let h ∈ A be defined by h (x) =

Ex′∼µ

[
(f (x)− f (x′))

2
+

]
. Then σ2

sf (f) ≤ Eβf [h].

Define two operators D2 : A → A and V 2
+ : A → A by

D2f =
∑
k

(
f − inf

y∈Ωk
Skyf

)2

and V 2
+f =

∑
k

Ey∼µk

[((
f − Skyf

)
+

)2
]
.

Clearly V 2
+f ≤ D2f as D2f is obtained by bounding the expectations in the

definition of V 2
+ by their suprema.

Lemma 26 For β > 0 and f ∈ A

Entf (β) ≤ β2

2
Eβf

[
V + (f)

]
.

Proof. For k ∈ {1, ..., n} write hk = Ey∼µk

[(
f − Skyf

)2
+

]
, so that V + (f) =∑

k hk. The conditional version of Lemma 25 then reads for 0 ≤ s ≤ β and
k ∈ {1, ..., n}

σ2
k,sf (f) ≤ Ek,βf [hk] .

Using (TB3) and (TB5) we get

Entf (β) ≤
∫ β

0

∫ β

t

∑
k

Eβf
[
σ2
k,sf (f)

]
dsdt

≤
∫ β

0

∫ β

t

∑
k

Eβf [Ek,βf [hk]] dsdt

=

∫ β

0

∫ β

t

∑
k

Eβf [hk] dsdt

=
β2

2
Eβf

[
V + (f)

]
,
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where we used the identity Eβf [Ek,βf [h]] = Eβf [h] for h ∈ A.

The usual arguments involving (TB1) and an optimization in β now imme-
diately lead to

Theorem 27 With t > 0

Pr {f − E [f ] > t} ≤ exp

(
−t2

2 supx∈Ω V
2
+f (x)

)
≤ exp

(
−t2

2 supx∈ΩD
2f (x)

)
.

We get a corresponding lower tail bound only for D2 and we have to use an
estimate similar to what was used in the proof of Bennett’s inequality.

Lemma 28 If f − infk f ≤ 1,∀k then for β > 0

Ent−f (β) ≤ ψ (β)E−βf
[
D2f

]
,

with ψ defined as in (9).

Proof. Let k ∈ {1, ..., n}. We write hk := f − infk f . Then hk ∈ [0, 1] and for
s ≤ β

Ek,−shk
[
h2
k

]
=
Ek
[
h2
ke
−βhke(β−s)hk

]
Ek
[
e−βhke(β−s)hk

] ≤ e(β−s)Ek
[
h2
ke
−βhk

]
Ek [e−βhk ]

= e(β−s)Ek,−βhk
[
h2
k

]
.

We therefore have∫ β

0

∫ β

t

Ek,−sf
[
h2
k

]
ds dt =

∫ β

0

∫ β

t

Ek,−shk
[
h2
k

]
ds dt

≤
(∫ β

0

∫ β

t

eβ−sds dt

)
Ek,−βhk

[
h2
k

]
= ψ (β)Ek,−βf

[
h2
k

]
,

where we used the formula∫ β

0

∫ β

t

e−sds dt = 1− e−β − βe−β .

Thus, using Theorem 12 and the identity E−βfEk,−βf = E−βf

Ent−f (β) ≤ E−βf

[∑
k

∫ β

0

∫ β

t

σ2
k,−sf [f ] ds dt

]
≤ E−βf

[∑
k

∫ β

0

∫ β

t

Ek,−sf
[
h2
k

]
ds dt

]

≤ ψ (β)E−βf

[∑
k

Ek,−βf
[
h2
k

]]
= ψ (β)E−βf

[
D2f

]
.

Lemma 26 and Lemma 28 together with (TB2) imply the inequalities

lnE
[
eβ(f−E[f ])

]
≤ β

2

∫ β

0

Eγf
[
V 2

+f
]
dγ. (11)
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and, if f − infk f ≤ 1 for all k, then

lnE
[
eβ(E[f ]−f)

]
≤ ψ (β)

β

∫ β

0

E−γf
[
D2f

]
dγ, (12)

where in the last inequality we also used the fact that γ 7→ ψ (γ) /γ2 is nonde-
creasing. Bounding the thermal expectation with the uniform norm and substi-

tution of β = ln
(

1 + t
∥∥D2f

∥∥−1

∞

)
gives the following lower tail bound as in the

proof of the Bennett-Bernstein inequalities.

Theorem 29 If f − infk f ≤ 1 for all k, then for t > 0 and with ∆ :=
supx∈ΩD

2f (x)

Pr {Ef − f > t} ≤ exp

(
−∆

((
1 +

t

∆

)
ln

(
1 +

t

∆

)
− t

∆

))
≤ exp

(
−t2

2 supx∈ΩD
2f (x) + 2t/3

)
.

4.3 Convex Lipschitz functions

In section 4.1 we gave a sub-gaussian bound for general Lipschitz functions of
standard Gaussian processes. Now we give the same upper tail bound under
different hypotheses. Instead of assuming µk to be standard normal we require
Ωk = [0, 1] and let µk be perfectly arbitrary. On the other hand, in addition to
being an L-Lipschitz function we require f to be convex (actually only separately
convex). For simplicity we assume f to be differentiable.

Theorem 30 Let Ωk = [0, 1] and let f ∈ A be C1, L-Lipschitz and such that
y ∈ [0, 1] 7→ Skyf (x) is convex for all k and all x. Then

Pr {f > Ef + s} ≤ e−s
2/2L2 .

Proof. Let x ∈ [0, 1]
n, k ∈ {1, ..., n} and y ∈ [0, 1] such that Skyf (x) ≤ f (x).

Then, using separate convexity,

f (x)− Skyf (x) ≤
〈
x− Skyx, ∂f (x)

〉
Rn = (xk − y)

∂

∂xk
f (x) ≤

∣∣∣∣ ∂∂xk f (x)

∣∣∣∣ .
We therefore have f (x)− infy S

k
yf (x) ≤ |(∂/∂xk) f (x)| and

D2f (x) =

n∑
k=1

(
f (x)− inf

y
Skyf (x)

)2

≤ ‖∇f (x)‖2Rn ≤ L
2.

Theorem 27 then gives the conclusion.
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4.4 The spectral norm of a random matrix

For x ∈ [−1, 1]
mn let M (x) be the m × n matrix whose entries are given by

the components of x. We are interested in the concentration properties of the
operator norm of M (X), when X is a vector with independent, but possibly
not identically distributed components chosen from [−1, 1]. The function in
question is then f : [−1, 1]

mn → R defined by

f (x) = ‖M (x)‖sp = sup
‖w‖,‖v‖=1

〈M (x) v, w〉 ,

where 〈., .〉 and ‖.‖ refer to inner product and norm in Rn.
To bound D2f (x) first let x ∈ [−1, 1]

mn be arbitrary but fixed, and let v
and w be unit vectors witnessing the supremum in the definition of f (x).
Now let (k, l) be any index to a matrix entry and choose any y ∈ [−1, 1] such

that S(k,l)
y f (x) ≤ f (x). Then

f (x)− S(k,l)
y f (x) = 〈M (x) v, w〉 − sup

‖w′‖,‖v′‖=1

〈
S(k,l)
y M (x) v′, w′

〉
≤

〈(
M (x)− S(k,l)

y M (x)
)
v, w

〉
= (xkl − y) vkwl

≤ 2 |vk| |wl| .

Observe that f − infk f ≤ 2. Also

D2f (x) =
∑
k,l

(
f (x)− inf

y∈[−1,1]
S(k,l)
y f (x)

)2

≤ 4
∑
k,l

|vk|2 |wl|2 = 4.

The results of the previous section (rescaling for the lower tail to get f−infk f ≤
1) then lead to a concentration inequality independent of the size of the random
matrix.

Theorem 31 For t > 0.

Pr {f − E [f ] ≥ t} ≤ exp

(
−t2
8

)
and

Pr {E [f ]− f ≥ t} ≤ exp

(
−t2

8 + 4t/3

)
.

Observe that the argument depends on the fact that the unit vectors v and
w could be fixed independent of k and l. This would not have been possible
with the bounded difference inequality.
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5 Beyond uniform bounds

All the above applications of the entropy method to derive upper tail bounds
involved an inequality of the form

Entf (γ) ≤ ξ (γ)Eγf [G (f)] ,

where ξ is some nonnegative real function and G is some operator G : A →
A, which is positively homogeneous of order two. For the bounded difference
inequality ξ (γ) = γ2/8 and G = R2, for the Bennett inequality ξ (γ) = γeγ −
eγ + 1 and G = Σ2, for Theorem 27 we had ξ (γ) = γ2/2 and G = V 2

+. Theorem
12 (TB1) is then invoked to conclude that

lnEeβ(f−Ef) ≤ β
∫ β

0

ξ (γ)

γ2
Eγf [G (f)] dγ ≤ β sup

x
G (f) (x)

∫ β

0

ξ (γ) dγ

γ2
. (13)

An analogous strategy was employed for the lower tail bound Theorem 29.
The uniform estimate Eγf [G (f)] ≤ supxG (f) (x) in (13), while being very

simple, is somewhat loose and can sometimes be avoided by exploiting special
properties of the thermal expectation and the function in question.

5.1 Self-boundedness

The first possibility we consider is that the function G (f) can be bounded in
terms of the function f itself, a property referred to as self-boundedness [4]. For
example, if simply G (f) ≤ f then Eγf [G (f)] ≤ Eγf [f ] = (d/dγ) lnZγf , and
if the function ξ has some reasonable behavior, then the first integral in (13)
above can be bounded by partial integration or even more easily. As an example
we apply this idea in the setting of Theorems 27 and 29.

Lemma 32 Suppose that for f ∈ A there are nonnegative numbers a, b such
that
(i) V 2

+f ≤ af + b. Then for 0 ≤ β < 2/a

lnE
[
eβ(f−E[f ])

]
≤ β2 (aEf + b)

2− aβ ,

(ii) D2f ≤ af + b. If in addition f − infk f ≤ 1 for all k, then for β < 0
and a ≥ 1

lnE
[
eβ(E[f ]−f)

]
≤ β2 (aE [f ] + b)

2
.

Proof. (i) We use Lemma 11 and get

lnE
[
eβ(f−E[f ])

]
= β

∫ β

0

Entf (γ)

γ2
dγ ≤ β

2

∫ β

0

Eγf
[
V 2

+f
]
dγ ≤ aβ

2

∫ β

0

Eγf [f ] dγ +
bβ2

2

=
aβ

2
lnZβf +

bβ2

2
,
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where the last identity follows from the fact that Eγf [f ] = (d/dγ) lnZγf . Thus

lnE
[
eβ(f−E[f ])

]
≤ aβ

2
lnEeβ(f−E[f ]) +

aβ2

2
Ef +

bβ2

2
,

and rearranging this inequality for β ∈ (0, 2/a) establishes the claim.
(ii) For β < 0 we use Lemma 12

lnE
[
eβ(E[f ]−f)

]
≤ aψ (β)

β

∫ β

0

E−γf [f ] dγ + bψ (β) =
−aψ (β)

β
lnZ−βf + bψ (β)

=
−aψ (β)

β
lnE

[
eβ(E[f ]−f)

]
+ ψ (β) (aE [f ] + b) .

Rearranging gives

lnE
[
eβ(E[f ]−f)

]
≤ ψ (β)

1 + aβ−1ψ (β)
(aE [f ] + b) ≤ β2 (aE [f ] + b)

2
,

where one verifies that for β > 0 and a ≥ 1 we have ψ (β)
(
1 + aβ−1ψ (β)

)−1 ≤
β2/2.

To convert part (i) into a tailbound we need an optimization lemma.

Lemma 33 Let C and b denote two positive real numbers, t > 0. Then

inf
β∈[0,1/b)

(
−βt+

Cβ2

1− bβ

)
≤ −t2

2 (2C + bt)
. (14)

Proof. Let h (t) = 1 + t−
√

1 + 2t. Then use

2h (t) (1 + t) = 2 (1 + t)
2 − 2 (1 + t)

√
1 + 2t

= (1 + t)
2 − 2 (1 + t)

√
1 + 2t+ (1 + 2t) + t2

=
(
1 + t−

√
1 + 2t

)2
+ t2

≥ t2,

so that

h (t) ≥ t2

2 (1 + t)
. (15)

Substituting

β =
1

b

(
1−

(
1 +

bt

C

)−1/2
)

in the left side of (14) we obtain

inf
β∈[0,1/b)

(
−βt+

Cβ2

1− bβ

)
≤ −2C

b2
h

(
bt

2C

)
≤ −t2

2 (2C + bt)
,

where we have used (15).
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Theorem 34 Suppose for f ∈ A there are nonnegative numbers a, b such that
(i) V 2

+f ≤ af + b. Then for t > 0 we have

Pr {f − E [f ] > t} ≤ exp

(
−t2

2 (aE [f ] + b+ at/2)

)
.

(ii) D2f ≤ af + b. If in addition, a ≥ 1 and f − infk f ≤ 1,∀k ∈ {1, ..., n},
then

Pr {E [f ]− f > t} ≤ exp

(
−t2

2 (aE [f ] + b)

)
.

Proof. Part (i) follows from Lemma 32 (i) and Lemma 33). Part (ii) is imme-
diate from Lemma 32 (ii).

Boucheron et al [4] have given a refined version of the lower tail bound,
where the condition a ≥ 1 is improved to a ≥ 1/3 for the lower tail. There they
also show that Theorem 34 and Theorem 27 together suffi ce to derive a version
of the convex distance inequality which differs from Talagrand’s original result
only in that it has an inferior exponent.

5.2 Convex Lipschitz functions revisited

In Section 4.3 we gave a sub-Gaussian bound for the upper tail of separately
convex Lipschitz functions on [0, 1]

n. Now we use self boundedness to comple-
ment this with a sub-Gaussian lower bound, using an elegant trick of Boucheron
et al [5] where the lower bound in Theorem 34 is applied to the square of the
Lipschitz function f . We need the additional assumption that f2 takes values
in an interval of length at most one.

Theorem 35 Let Ωk = [0, 1] and let f ∈ A be C1, L-Lipschitz, nonnegative
and such that y ∈ [0, 1] 7→ Skyf (x) is convex for all k and all x, and suppose in
addition, that f2 takes values in an interval of length at most one. Then for all
t ∈ [0, E [f ]]

Pr {E [f ]− f > t} ≤ e−t
2/8L2 .

Proof. The trick is to study the function f2 instead of f . Let x ∈ [0, 1]
n. For

any k we have f2 (x) − inf2 fk (x) ≤ 1, and using separate convexity as in the

29



proof of Theorem 30, f (x)− inf fk (x) ≤ |(∂/∂xk) f (x)|, so

D2f2 (x) =
∑
k

(
f2 (x)− inf

k
f2 (x)

)2

=
∑
k

(
f (x)− inf

k
f (x)

)2(
f (x) + inf

k
f (x)

)2

≤
∑
k

(
∂

∂xk
f (x)

)2(
f (x) + inf

k
f (x)

)2

≤ 4
∑
k

(
∂

∂xk
f (x)

)2

f (x)
2

≤ 4L2f (x)
2

By the lower tail bound of Theorem 34 we get a lower tail bound for f2

Pr
{
E
[
f2
]
− f2 > t

}
≤ exp

(
−t2

8L2E [f2]

)
.

Then

Pr {E [f ]− f > t} = Pr
{√

E [f2]E [f ]−
√
E [f2]f >

√
E [f2]t

}
≤ Pr

{
E
[
f2
]
− f2 >

√
E [f2]t

}
≤ exp

(
−t2
8L2

)
.

Here we used E [f ] ≤
√
E [f2] and

√
E [f2]f ≥ f2 in the first inequality.

5.3 Decoupling

A second method to avoid the uniform bound on the thermal expectation uses
decoupling. By the duality formula of Theorem 4 we have for any f, g ∈ A and
β ∈ R

Eβf [g] ≤ Entf (β) + E [ln eg] . (16)

In the discussion at the beginning of Section 5 where we had a general bound
of the form Entf (β) ≤ ξ (β)Eβf [G (f)]. Using (16) we can now obtain for any
θ > 0

Entf (β) ≤ ξ (β) θ−1Eβf [θG (f)] ≤ ξ (β) θ−1 (Entf (β) + lnE [exp (θG (f))]) ,

and for values of β and θ where θ > ξ (β) we obtain

Entf (β) ≤ ξ (β)

θ − ξ (β)
lnE [exp (θG (f))] . (17)

30



Hence, if we can control the moment generating function of G (f) (or some
suitable bound thereof), we obtain concentration inequalities for f , effectively
passing from the thermal measure µβf to the thermal measure µθG(f).

5.4 The supremum of an empirical process

We will apply this trick, which has been proposed in [3], to the upwards tail
of the supremum of an empirical process, sharpening the bound obtained in
Section 3.4.

Theorem 36 Let X1, ..., Xn be independent with values in X with Xi distrib-
uted as µi, and let F be a finite class of functions f : X → [−1, 1] with
E [f (Xi)] = 0. Define F : Xn → R and W : Xn → R by

F (x) = sup
f∈F

∑
i

f (xi) and

W (x) = sup
f∈F

∑
i

(
f2 (xi) + E

[
f2 (Xi)

])
.

Then for t > 0

Pr {F − E [F ] > t} ≤ exp

(
−t2

2E [W ] + t

)
.

This result is easy and somewhat improves over Theorem 12.2 in [5], since by
the triangle inequality E [W ] ≤ Σ2 + σ2 and the constants in the denominator
of the exponent are better by a factor of two, and optimal for the variance term.

Proof. Let 0 < γ ≤ β < 2. Using Theorem 26 and (16) we get

EntF (γ) ≤ γ

2
EγF

[
γV + (F )

]
≤ γ

2

(
EntF (γ) + lnEeγV

+(F )
)
.

Rearranging gives
EntF (γ) ≤ γ

2− γ lnEeγV
+(F ). (18)

Fix some x ∈ Xn and let f̂ ∈ F witness the maximum in the definition of F (x).

For y ∈ X we have
(
F − SkyF

)
+
≤
(
f̂ (xi)− f̂ (y)

)
+
and by the zero mean
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assumption

V+ (F ) (x) =
∑
k

Ey∼µk

[(
F (x)− SkyF (x)

)2
+

]
≤

∑
k

Ey∼µk

(
f̂ (xk)− f̂ (y)

)2

+

≤
∑
k

Ey∼µk

(
f̂ (xk)− f̂ (y)

)2

=
∑
k

(
f̂2 (xk) + E

[
f̂2 (Xk)

])
≤ W (x) .

So V+ (F ) ≤W . It follows from (18) that

EntF (γ) ≤ γ

2− γ lnEeγV
+(F ) ≤ γ

2− γ lnE
[
eγW

]
. (19)

Next we establish self-boundedness of W . Let f̂ ∈ F (different from the pre-
vious f̂ , which we don’t need any more) witness the maximum in the definition
of W (x). Then

V+ (W ) (x) =
∑
k

Ey∼µk
(
W (x)− SkyW (x)

)2
+

≤
∑
k

Ey∼µk

[(
f̂2 (xk)− f̂2 (y)

)2

+

]
≤

∑
k

f̂2 (xk)

≤ W.

It therefore follows from Lemma 32 above, that

lnE
[
eγW

]
≤ γ2E [W ]

2− γ + γE [W ] =
γE [W ]

1− γ/2 .

Combining this with (19) gives

EntF (γ) ≤ γ

2− γ

(
γE [W ]

1− γ/2

)
=

γ2

(1− γ/2)
2

E [W ]

2
.

From (TP1) in Theorem 12 we conclude that

lnEeβ(F−EF ) = β

∫ β

0

EntF (γ)

γ2
dγ ≤ β

∫ β

0

1

(1− γ/2)
2 dγ

E [W ]

2

=
β2

1− β/2
E [W ]

2
.
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Using Lemma 33 it follows that

Pr {F − E [F ] > t} ≤ inf
β∈(0,2)

exp

(
−βt+

β2

1− β/2
E [W ]

2

)
≤ exp

(
−t2

2E [W ] + t

)
.
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6 Appendix I. Table of Notation

General notation
Ω =

∏n
k=1 Ωk underlying (product-) probability space

A bounded measurable functions on Ω
µ = ⊗nk=1µk (product-) probability measure on Ω
Xk random variable distributed as µk in Ωk
f ∈ A fixed function under investigation
g ∈ A generic function
E [g] =

∫
Ω
gdµ expectation of g in µ

σ2 [g] = E
[
(g − E [g])

2
]

variance of g in µ

Notation for the entropy method
β = 1/T inverse temperature
Eβf [g] = E

[
geβf

]
/E
[
eβf
]

thermal expectation of g
Zβf = E

[
eβf
]

partition function
dµβf = Z .1βf e

βfdµ thermal measure (canonical ensemble)
Entf (β) = βEβf [f ]− lnZβf . (canonical) entropy
Af (β) = 1

β lnZβf free energy

σ2
βf (g) = Eβf

[
(g − Eβf [g])

2
]

thermal variance of g

ψ (t) = et − t− 1
SkyF (x) = F (x1, ..., xk−1, y, xk+1, ..., xn) substitution operator
Ek [g] (x) =

∫
Ωk
Sky g dµk (y) conditional expectation

Ak ⊂ A functions independent of k-th variable
Zk,βf = Ek

[
eβf
]

conditional partition function
Ek,βf [g] = Z−1

k,βfEk
[
geβf

]
conditional thermal expectation

Entk,f (β) = βEk,βf [g]− lnZk,βf conditional entropy

σ2
k,βf [g] = Ek,βf

[
(g − Ek,βf [g])

2
]

conditional thermal variance

σ2
k [g] = Ek

[
(g − Ek [g])

2
]

conditional variance

Operators on A
Dk
y,y′g = Sky g − Sky′g difference operator

rk (g) = supy,y′∈Ωk
Dk
y,y′f conditional range operator

R2 (g) =
∑
k r

2
k (g) sum of conditional square ranges

Σ2 (g) =
∑
k σ

2
k [g] sum of conditional variances

(infk g) (x) = infy∈Ωk S
k
y g (x) conditional infimum operator

V 2
+g =

∑
k Ey∼µk

[((
g − Sky

)
+

)2
]

Efron-Stein variance proxy

D2g =
∑
k (g − infk g)

2
. worst case variance proxy
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