A note on exponential Efron-Stein inequalities
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1 Introduction

For bounded functions of independent variables I give an entropy bound (Theo-
rem 2 below) in terms of the operator VT introduced in [1] together with some
corollaries which slightly improve over some - now classical - results in the the-
ory of concentration inequalities. I also improve on the recent Bernstein-type
inequality in [6].

2 A bound on the thermal variance

Let (2, M, 1) be a probability space and A (£2) the algebra of bounded, mea-
surable real valued functions on Q. For f € A(Q) and 8 € R we define the
thermal measure pgp = edu/E [eﬂf ], and the corresponding functionals of
thermal expectation Egy [] and thermal variance o7 [.]. We prove the

Lemma 1 Let 0 < s < 3. Then

2
02 (f) < Bamyy [Bar [(F @) = £ @]
Proof. Let ¢ be any real function. By direct computation

d

%Eﬁf [V ()] = Egy [ (f) 1 — Egy [¥ ()] Egy [f]- (1)

By Chebychev’s association inequality Eg¢ [¢ (f)] is nonincreasing (nondecreas-
ing) in 3 if ¢ is nonincreasing (nondecreasing). Now define g : R> — R by

9(5,8) = Banpey [Bermp, [(£ @) = £ @) Lm0

so that

7% (1) = 5 Bavy [Bom, [(F @) = @] = 95,5

Now for fixed z the function (f (z)— f (z))* 14(2)>f(2) i nonincreasing in
f(2), so g (s,t) is nonincreasing in t. On the other hand, for fixed @/, (f (z) — f (z))? Lt(@)> f(a)



is nondecreasing in f (), so g (s,t) is nondecreasing in s (this involves exchang-
ing the two expectations in the definition of g (s,)). So, since p; = p, we get
from 0 < s < 3 that

02 (£) = 9(5,8) < 9(8,0) = Bunpy, B [(f (@) ~ £ @))2]]

[
Here is another way to write the conclusion: let h € A () be defined by

B (@) = By [(f (@) = f (&))3]- Then 0 (£) < By [h].

3 Some background material

The contents of this section are explained in more detail in [5]. Let (Q, M, ) =
[Tr) (%, My, 1) be a product of probability spaces. For k € {1,...,n} and
y € ), we define the substitution operator Sfj on A(Q) by

(S;ff) (@1, @) = f(@1, 0o TR 1, Yy Tl 1y oy Tn) -

The conditional expectation operator Ej is defined by
EL.f :/ Sy f dpy,.
Qp

For 8 e R and f € A(Q) and k € {1,...,n} the conditional thermal measure
is puy, 55 = €’ dpy,/Ey [¢’7] and the conditional thermal expectations Ej gy []
and variances ai, gy are defined correspondingly. The entropy Sy (8) of f at 3
is given by
S5 (B) = 8By [f] = m B[]

Again the conditional entropy Sk, (3) is the analogous member of A (2), where
the expectation F is replaced by Ej. The following three identities are obtained
from straightforward computations (see [5])

o B
wp[eu-en) - 5 Sj;gwdv @)
B rB
S;(8) = / / 0% (f)ds di (3)
B rB
Sep(B) = / / o2 4 (f)ds dr. (4)

We also have the well known thermal subadditivity of entropy

Z Sk f (ﬂ)] ;

k=1

Sy (B) < Egy

which, together with (4) gives

Sy (B) < Egy




4 Exponential Efron Stein inequalities
Define two operators D and V' on A () by

2
3 (7 50

k

;Eywk [(f—SZ’jf)ﬂ :

D(f)

VT(f)

Clearly we have V' (f) < D (f) for any f € A(Q).

Theorem 2 For 8 >0

Sr(B) < = Egr [VT ()]

52
2
Proof. For k € {1,...,n} write hy = Ey.,, [(f — S?’jf)ﬂ, so that V* (f) =
Zk hi. The conditional version of Lemma 1 then reads for 0 < s < 8 and
kEe{l,..,n}

J%,sf (f) < Erpy[ha] -

Substitution in (5) gives

Sy (B)

IN

B8 B
/0 /t %:Eﬁf (0% o ()] dsdt
B8 B
/0 / ZEﬁf [Ek gy [hi]] dsdt
t g
B8 B
/ / Y Esy [hi] dsdt
0 t &

= %Eﬁf V(Hl.

where we used the identity Egy [Ex gy [h]] = Egy [h] for h e A(Q). m

IN

Spelling this out for comparison with Proposition 10 in [1] gives for 5 > 0

/82

BE [feﬁf} - FE [eﬁf] In [eﬁf] < ?E [erV+ (f]-

In the sequel some corollaries are given.

Corollary 3

42
Pr{f‘Ef>t}<eXp<2||v+t<f> )



Proof. By (2)

nE [eﬁ(ffEf)] _ 5/6 SJ;(J)
0

BQ
S5 VT

B
<5 [ By

The result then follows from a straightforward application of the exponential
moment method. m

This corollary improves on Theorem 1 (1) in [4] by using the tighter func-
tional |V (.)||, instead of || D (f)|| ., and it improves the exponent in Corollary
3 in [1] by a factor of 2. In a similar way the following improves on Theorem 13
(1) in [4] (and Theorem 6.19 in [3]) and on Theorem 5 in [1].

Corollary 4 Suppose there are positive constants a and b such that

VT (f) <af +b.

Then
o BE[f]  B°b/2
In Fe < 1—%a5+1—%05
—t2
and Pr{f —Ef >t} < exp (QQE[f]+2b+at>'

Proof. We start by bounding the log moment generating function as above
B B 2

e e < O g v (]ar< Y [ B

0 0

2
? In EePf + %b

2
= ?lnEeﬁ(ffEf) + %(aE[f] +D).

Rearrangement gives for 3 € (0,2/a)

2
8(f-EBf « B a b
In Fe ST 143 <2E[f]+ .

This implies the first conclusion and gives the second one by proceeding as in
the proof of Theorem 13 in [4]. m

Next I apply the Vi bounds to the suprema of empirical processes. The
proof uses the inequality

Egflg] <S5 (B) +InEef], (6)

which can be derived from Jensen’s inequality.



Theorem 5 Let X1,..., X,, be independent with values in X with X; distributed
as w;, and let F be a finite class of functions f : X — [—1,1] with E [f (X;)] = 0.
Define FF': X - R and W : X™ — R by

Then fort >0

42
Pr{F — E[F] > t} < exp <2E[Wt]+t>

This improves over Theorem 12.2 in [3], since by the triangle inequality
E[W] < 2% + 02 and the constants in the denominator of the exponent are
better by a factor of two, and optimal for the variance term. Furthermore
the proof is more economical and elementary, relying exclusively on the LSI of
Theorem 2.

Proof. Let 0 < v < 8 < 2. Using Theorem 2 and (6) we get

Se(y) < ;jEw WV (F)] <

Mo |2

{SF (7)+1n E67V+(F)} .

Rearranging gives

Sr () < T BV, (7)

2—y

Fix some x € X™ and let f € F witness the maximum in the definition of F (x).

For y € X we have (F — S’;F)+ < (f () — f(y)) and by the zero mean
+

assumption

Vi(F)(x) = 3 By, [(F(x) = SEF (x))?]
k
< Y By, (f o) - F W)
k
< Y By, (Fan - F )
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So Vi (F) <W. Now let f € F (different from the previous f, which we don’t
need any more) witness the maximum in the definition of W (x). Then

VeW)(x) = Y By, (W (%) — S5W (x))”
k

< ;Ey"’”k {(fQ (z1) — f* (Z/))J
< > ()
<

If follows from (7), the fact that V (F) < W and Corollary 4 above, that

Sp(y) < T peV @)
2-9

< si-mB[Y]

< W(WE[W]>

2—~y\1-—~/2
_ v EW]
(1-7/2)° 2

From the bound on the log moment generating function (2) we conclude that

B B
I EeS(F—EF)  _ 5/ SF gwd’yﬁﬁ/ 1 dy E[W]
o o (1—7/2) 2
5> E[W]
1-6/2 2
Using Lemma 12 in [4] it follows that
. 5> E[W]
Pr{FF-E|F| >t} < f - —_—
(F-EIF>0 < it o (kLo Bl

< oo ()

N

5 Softening the interaction functional

Another application of Theorem 2 is a subtle improvement of the interaction
functional used in the Bernstein-type inequality in [6]. For f € A(Q) define

1/2

TE(F)=2(sup > Eevp | Y. or (f=SLf) 14, (2) :
l

x€Q kik £l



where A; = A; (x) is the subset of ; defined by
A={ze:S!2(f) <2 (f)}.

A; is a set-valued function depending on x € Q. Clearly J,f (f) < J,, (f) for

any f.

The modification works as follows. Thanks to Theorem 2 the operator D
can simply be replaced by V* in Lemma 9, Lemma 10 and Proposition 14 in
[6]. Proposition 15 in [6] then has to be replaced by the following.

Proposition 6 We have V' (2 (f)) < J,F (f)? S2(f) for any f € A(Q).

Proof. Fix x € Q. For any z €

SIS (f) =) Sl (f)=oi (/) + Y Stor(f),
k

k:k#£l

where we used the fact that S! o7 (f) = o7 (f), because o7 (f) € A; (). Then

VEEE() = 3 Be [(52 () = 8122 () 14, (2)]
l

2

D B | Dok (N)=0i (F) = D Sloi ()] 1a ()
l k

k:k#£l

2

S B [[ 3 (02 =502 (D) | 14 (2)
l

Kkl

Using 207, (f) = E(yy)mp2 (D’;’y,f)Q we get, similar to [6],

vt (22 (f))
2
2 , 2
= ZE—ZNM Z Eywymonz (Dilju’f) - SiE(yw’)Nuﬁ (Dzlj,y’f) La, (2)
l k:k#L

2
= ZE—ZNM (Z E(y,y')Nui [(Dlzj,y’f - Dlzj,y’sif) (D];,y’f + D];,y’sif>]) La, (2)
1 k#l

2
< ZEZNM Z E(y’y’)wti [Dlij,y/ (f - Sif)}
l

ikl

2
< " By [DE, f+DELSL 1, <z>}
k:k#l



by Cauchy-Schwarz. We use Holder’s inequality to bound this by

2
ZEZNMZ Z E(y,y')Nui [Dzlj,y’ (f - Sif)] g, ()] x
/

ikl

k k 1012
X sup E E(yyymp2 [Dyy [+ Dy S f]
2€AL L

We then bound the supremum by
k E o al g2
sup 2 : E(y,y’)Nui [Dy,y’f"_Dy,y’Szf]
2€AL L

2 2
Sup Z By {2 (Dyy f)” +2(Dy 0 SLf) ]
2€AL L

= 4) op(f)+4sup SLDY oh (f)

Kkl €A L

< 4(22 (f) + sup SL¥? (f)> <82 (f),

z€EA;

IN

where the last inequality follows from the definition of A;. To conclude

VI () < 2 Pa | D Byt [Py (F = 5L0)] 14, ()| 22()
l

k:k#£l

IN

dsup S By | S 02 (F 8L 1a ()| 22(6)
l

x€ kik £l

= (IDH2.

Substitution in the appropriately modified Proposition 14 of [6] then gives
the main result in [6] with J,, replaced by J/F.
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