A note on exponential Efron-Stein inequalities

July 6, 2017

1 Introduction

For bounded functions of independent variables I give an entropy bound (Theorem 2 below) in terms of the operator V^{+}introduced in [1] together with some corollaries which slightly improve over some - now classical - results in the theory of concentration inequalities. I also improve on the recent Bernstein-type inequality in [6].

2 A bound on the thermal variance

Let $(\Omega, \mathcal{M}, \mu)$ be a probability space and $\mathcal{A}(\Omega)$ the algebra of bounded, measurable real valued functions on Ω. For $f \in \mathcal{A}(\Omega)$ and $\beta \in \mathbb{R}$ we define the thermal measure $\mu_{\beta f}=e^{\beta f} d \mu / E\left[e^{\beta f}\right]$, and the corresponding functionals of thermal expectation $E_{\beta f}[$.$] and thermal variance \sigma_{\beta f}^{2}[$.$] . We prove the$

Lemma 1 Let $0 \leq s \leq \beta$. Then

$$
\sigma_{s f}^{2}(f) \leq E_{x \sim \mu_{\beta f}}\left[E_{x^{\prime} \sim \mu}\left[\left(f(x)-f\left(x^{\prime}\right)\right)_{+}^{2}\right]\right] .
$$

Proof. Let ψ be any real function. By direct computation

$$
\begin{equation*}
\frac{d}{d \beta} E_{\beta f}[\psi(f)]=E_{\beta f}[\psi(f) f]-E_{\beta f}[\psi(f)] E_{\beta f}[f] \tag{1}
\end{equation*}
$$

By Chebychev's association inequality $E_{\beta f}[\psi(f)]$ is nonincreasing (nondecreasing) in β if ψ is nonincreasing (nondecreasing). Now define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
g(s, t)=E_{x \sim \mu_{s f}}\left[E_{x^{\prime} \sim \mu_{t f}}\left[\left(f(x)-f\left(x^{\prime}\right)\right)^{2} 1_{f(x) \geq f\left(x^{\prime}\right)}\right]\right]
$$

so that

$$
\sigma_{s f}^{2}(f)=\frac{1}{2} E_{x \sim \mu_{s f}}\left[E_{x^{\prime} \sim \mu_{s f}}\left[\left(f(x)-f\left(x^{\prime}\right)\right)^{2}\right]\right]=g(s, s)
$$

Now for fixed x the function $\left(f(x)-f\left(x^{\prime}\right)\right)^{2} 1_{f(x) \geq f\left(x^{\prime}\right)}$ is nonincreasing in $f\left(x^{\prime}\right)$, so $g(s, t)$ is nonincreasing in t. On the other hand, for fixed $x^{\prime},\left(f(x)-f\left(x^{\prime}\right)\right)^{2} 1_{f(x) \geq f\left(x^{\prime}\right)}$
is nondecreasing in $f(x)$, so $g(s, t)$ is nondecreasing in s (this involves exchanging the two expectations in the definition of $g(s, t))$. So, since $\mu_{0 f}=\mu$, we get from $0 \leq s \leq \beta$ that

$$
\sigma_{s f}^{2}(f)=g(s, s) \leq g(\beta, 0)=E_{x \sim \mu_{\beta f}}\left[E_{x^{\prime} \sim \mu}\left[\left(f(x)-f\left(x^{\prime}\right)\right)_{+}^{2}\right]\right]
$$

Here is another way to write the conclusion: let $h \in \mathcal{A}(\Omega)$ be defined by $h(x)=E_{x^{\prime} \sim \mu}\left[\left(f(x)-f\left(x^{\prime}\right)\right)_{+}^{2}\right]$. Then $\sigma_{s f}^{2}(f) \leq E_{\beta f}[h]$.

3 Some background material

The contents of this section are explained in more detail in [5]. Let $(\Omega, \mathcal{M}, \mu)=$ $\prod_{k=1}^{n}\left(\Omega_{k}, \mathcal{M}_{k}, \mu_{k}\right)$ be a product of probability spaces. For $k \in\{1, \ldots, n\}$ and $y \in \Omega_{k}$ we define the substitution operator S_{y}^{k} on $\mathcal{A}(\Omega)$ by

$$
\left(S_{y}^{k} f\right)\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{k-1}, y, x_{k+1}, \ldots, x_{n}\right)
$$

The conditional expectation operator E_{k} is defined by

$$
E_{k} f=\int_{\Omega_{k}} S_{y}^{k} f d \mu_{k}
$$

For $\beta \in \mathbb{R}$ and $f \in \mathcal{A}(\Omega)$ and $k \in\{1, \ldots, n\}$ the conditional thermal measure is $\mu_{k, \beta f}=e^{\beta f} d \mu_{k} / E_{k}\left[e^{\beta f}\right]$ and the conditional thermal expectations $E_{k, \beta f}$ [.] and variances $\sigma_{k, \beta f}^{2}$ are defined correspondingly. The entropy $S_{f}(\beta)$ of f at β is given by

$$
S_{f}(\beta)=\beta E_{\beta f}[f]-\ln E\left[e^{\beta f}\right]
$$

Again the conditional entropy $S_{k, f}(\beta)$ is the analogous member of $\mathcal{A}(\Omega)$, where the expectation E is replaced by E_{k}. The following three identities are obtained from straightforward computations (see [5])

$$
\begin{align*}
\ln E\left[e^{\beta(f-E f)}\right] & =\beta \int_{0}^{\beta} \frac{S_{f}(\gamma)}{\gamma^{2}} d \gamma \tag{2}\\
S_{f}(\beta) & =\int_{0}^{\beta} \int_{t}^{\beta} \sigma_{s f}^{2}(f) d s d t \tag{3}\\
S_{k, f}(\beta) & =\int_{0}^{\beta} \int_{t}^{\beta} \sigma_{k, s f}^{2}(f) d s d t \tag{4}
\end{align*}
$$

We also have the well known thermal subadditivity of entropy

$$
S_{f}(\beta) \leq E_{\beta f}\left[\sum_{k=1}^{n} S_{k, f}(\beta)\right]
$$

which, together with (4) gives

$$
\begin{equation*}
S_{f}(\beta) \leq E_{\beta f}\left[\sum_{k=1}^{n} \int_{0}^{\beta} \int_{t}^{\beta} \sigma_{k, s f}^{2}(f) d s d t\right] \tag{5}
\end{equation*}
$$

4 Exponential Efron Stein inequalities

Define two operators D and V^{+}on $\mathcal{A}(\Omega)$ by

$$
\begin{aligned}
D(f) & =\sum_{k}\left(f-\inf _{y \in \Omega_{k}} S_{y}^{k} f\right)^{2} \\
V^{+}(f) & =\sum_{k} E_{y \sim \mu_{k}}\left[\left(f-S_{y}^{k} f\right)_{+}^{2}\right] .
\end{aligned}
$$

Clearly we have $V^{+}(f) \leq D(f)$ for any $f \in \mathcal{A}(\Omega)$.
Theorem 2 For $\beta>0$

$$
S_{f}(\beta) \leq \frac{\beta^{2}}{2} E_{\beta f}\left[V^{+}(f)\right]
$$

Proof. For $k \in\{1, \ldots, n\}$ write $h_{k}=E_{y \sim \mu_{k}}\left[\left(f-S_{y}^{k} f\right)_{+}^{2}\right]$, so that $V^{+}(f)=$ $\sum_{k} h_{k}$. The conditional version of Lemma 1 then reads for $0 \leq s \leq \beta$ and $k \in\{1, \ldots, n\}$

$$
\sigma_{k, s f}^{2}(f) \leq E_{k, \beta f}\left[h_{k}\right]
$$

Substitution in (5) gives

$$
\begin{aligned}
S_{f}(\beta) & \leq \int_{0}^{\beta} \int_{t}^{\beta} \sum_{k} E_{\beta f}\left[\sigma_{k, s f}^{2}(f)\right] d s d t \\
& \leq \int_{0}^{\beta} \int_{t}^{\beta} \sum_{k} E_{\beta f}\left[E_{k, \beta f}\left[h_{k}\right]\right] d s d t \\
& =\int_{0}^{\beta} \int_{t}^{\beta} \sum_{k} E_{\beta f}\left[h_{k}\right] d s d t \\
& =\frac{\beta^{2}}{2} E_{\beta f}\left[V^{+}(f)\right]
\end{aligned}
$$

where we used the identity $E_{\beta f}\left[E_{k, \beta f}[h]\right]=E_{\beta f}[h]$ for $h \in \mathcal{A}(\Omega)$.
Spelling this out for comparison with Proposition 10 in [1] gives for $\beta \geq 0$

$$
\beta E\left[f e^{\beta f}\right]-E\left[e^{\beta f}\right] \ln \left[e^{\beta f}\right] \leq \frac{\beta^{2}}{2} E\left[e^{\beta f} V^{+}(f)\right]
$$

In the sequel some corollaries are given.

Corollary 3

$$
\operatorname{Pr}\{f-E f>t\} \leq \exp \left(\frac{-t^{2}}{2\left\|V^{+}(f)\right\|_{\infty}}\right)
$$

Proof. By (2)

$$
\ln E\left[e^{\beta(f-E f)}\right]=\beta \int_{0}^{\beta} \frac{S_{f}(\gamma)}{\gamma^{2}} d \gamma \leq \frac{\beta}{2} \int_{0}^{\beta} E_{\gamma f}\left[V^{+}(f)\right] d \gamma \leq \frac{\beta^{2}}{2}\left\|V^{+}(f)\right\|_{\infty}
$$

The result then follows from a straightforward application of the exponential moment method.

This corollary improves on Theorem 1 (1) in [4] by using the tighter functional $\left\|V^{+}(.)\right\|_{\infty}$ instead of $\|D(f)\|_{\infty}$, and it improves the exponent in Corollary 3 in [1] by a factor of 2 . In a similar way the following improves on Theorem 13 (1) in [4] (and Theorem 6.19 in [3]) and on Theorem 5 in [1].

Corollary 4 Suppose there are positive constants a and b such that

$$
V^{+}(f) \leq a f+b
$$

Then

$$
\begin{aligned}
\ln E e^{\beta f} & \leq \frac{\beta E[f]}{1-\frac{1}{2} a \beta}+\frac{\beta^{2} b / 2}{1-\frac{1}{2} a \beta} \\
\text { and } \operatorname{Pr}\{f-E f>t\} & \leq \exp \left(\frac{-t^{2}}{2 a E[f]+2 b+a t}\right)
\end{aligned}
$$

Proof. We start by bounding the \log moment generating function as above

$$
\begin{aligned}
\ln E e^{\beta(f-E f)} & \leq \frac{\beta}{2} \int_{0}^{\beta} E_{\gamma f}\left[V^{+}(f)\right] d \gamma \leq \frac{a \beta}{2} \int_{0}^{\beta} E_{\gamma f}[f] d \gamma+\frac{\beta^{2}}{2} b \\
& =\frac{a \beta}{2} \ln E e^{\beta f}+\frac{\beta^{2}}{2} b \\
& =\frac{a \beta}{2} \ln E e^{\beta(f-E f)}+\frac{\beta^{2}}{2}(a E[f]+b)
\end{aligned}
$$

Rearrangement gives for $\beta \in(0,2 / a)$

$$
\ln E e^{\beta(f-E f)} \leq \frac{\beta^{2}}{1-\frac{1}{2} a \beta}\left(\frac{a}{2} E[f]+\frac{b}{2}\right)
$$

This implies the first conclusion and gives the second one by proceeding as in the proof of Theorem 13 in [4].

Next I apply the V_{+}bounds to the suprema of empirical processes. The proof uses the inequality

$$
\begin{equation*}
E_{\beta f}[g] \leq S_{f}(\beta)+\ln E\left[e^{g}\right] \tag{6}
\end{equation*}
$$

which can be derived from Jensen's inequality.

Theorem 5 Let X_{1}, \ldots, X_{n} be independent with values in \mathcal{X} with X_{i} distributed as μ_{i}, and let \mathcal{F} be a finite class of functions $f: \mathcal{X} \rightarrow[-1,1]$ with $E\left[f\left(X_{i}\right)\right]=0$. Define $F: \mathcal{X}^{n} \rightarrow \mathbb{R}$ and $W: \mathcal{X}^{n} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
F(\mathbf{x}) & =\sup _{f \in \mathcal{F}} \sum_{i} f\left(x_{i}\right) \text { and } \\
W(\mathbf{x}) & =\sup _{f \in \mathcal{F}} \sum_{i}\left(f^{2}\left(x_{i}\right)+E\left[f^{2}\left(X_{i}\right)\right]\right) .
\end{aligned}
$$

Then for $t>0$

$$
\operatorname{Pr}\{F-E[F]>t\} \leq \exp \left(\frac{-t^{2}}{2 E[W]+t}\right)
$$

This improves over Theorem 12.2 in [3], since by the triangle inequality $E[W] \leq \Sigma^{2}+\sigma^{2}$ and the constants in the denominator of the exponent are better by a factor of two, and optimal for the variance term. Furthermore the proof is more economical and elementary, relying exclusively on the LSI of Theorem 2.

Proof. Let $0<\gamma \leq \beta<2$. Using Theorem 2 and (6) we get

$$
S_{F}(\gamma) \leq \frac{\gamma^{2}}{2 \gamma} E_{\gamma F}\left[\gamma V^{+}(F)\right] \leq \frac{\gamma}{2}\left[S_{F}(\gamma)+\ln E e^{\gamma V^{+}(F)}\right]
$$

Rearranging gives

$$
\begin{equation*}
S_{F}(\gamma) \leq \frac{\gamma}{2-\gamma} \ln E e^{\gamma V^{+}(F)} \tag{7}
\end{equation*}
$$

Fix some $\mathbf{x} \in \mathcal{X}^{n}$ and let $\hat{f} \in \mathcal{F}$ witness the maximum in the definition of $F(\mathbf{x})$. For $y \in \mathcal{X}$ we have $\left(F-S_{y}^{k} F\right)_{+} \leq\left(\hat{f}\left(x_{i}\right)-\hat{f}(y)\right)_{+}$and by the zero mean assumption

$$
\begin{aligned}
V_{+}(F)(\mathbf{x}) & =\sum_{k} E_{y \sim \mu_{k}}\left[\left(F(\mathbf{x})-S_{y}^{k} F(\mathbf{x})\right)_{+}^{2}\right] \\
& \leq \sum_{k} E_{y \sim \mu_{k}}\left(\hat{f}\left(x_{k}\right)-\hat{f}(y)\right)_{+}^{2} \\
& \leq \sum_{k} E_{y \sim \mu_{k}}\left(\hat{f}\left(x_{k}\right)-\hat{f}(y)\right)^{2} \\
& =\sum_{k}\left(\hat{f}^{2}\left(x_{k}\right)+E\left[\hat{f}^{2}\left(X_{k}\right)\right]\right) \\
& \leq W(\mathbf{x})
\end{aligned}
$$

So $V_{+}(F) \leq W$. Now let $\hat{f} \in \mathcal{F}$ (different from the previous \hat{f}, which we don't need any more) witness the maximum in the definition of $W(\mathbf{x})$. Then

$$
\begin{aligned}
V_{+}(W)(\mathbf{x}) & =\sum_{k} E_{y \sim \mu_{k}}\left(W(\mathbf{x})-S_{y}^{k} W(\mathbf{x})\right)_{+}^{2} \\
& \leq \sum_{k} E_{y \sim \mu_{k}}\left[\left(\hat{f}^{2}\left(x_{k}\right)-\hat{f}^{2}(y)\right)_{+}^{2}\right] \\
& \leq \sum_{k} \hat{f}^{2}\left(x_{k}\right) \\
& \leq W
\end{aligned}
$$

If follows from (7), the fact that $V_{+}(F) \leq W$ and Corollary 4 above, that

$$
\begin{aligned}
S_{F}(\gamma) & \leq \frac{\gamma}{2-\gamma} \ln E e^{\gamma V^{+}(F)} \\
& \leq \frac{\gamma}{2-\gamma} \ln E\left[e^{\gamma W}\right] \\
& \leq \frac{\gamma}{2-\gamma}\left(\frac{\gamma E[W]}{1-\gamma / 2}\right) \\
& =\frac{\gamma^{2}}{(1-\gamma / 2)^{2}} \frac{E[W]}{2}
\end{aligned}
$$

From the bound on the \log moment generating function (2) we conclude that

$$
\begin{aligned}
\ln E e^{\beta(F-E F)} & =\beta \int_{0}^{\beta} \frac{S_{F}(\gamma)}{\gamma^{2}} d \gamma \leq \beta \int_{0}^{\beta} \frac{1}{(1-\gamma / 2)^{2}} d \gamma \frac{E[W]}{2} \\
& =\frac{\beta^{2}}{1-\beta / 2} \frac{E[W]}{2}
\end{aligned}
$$

Using Lemma 12 in [4] it follows that

$$
\begin{aligned}
\operatorname{Pr}\{F-E[F]>t\} & \leq \inf _{\beta \in(0,2)} \exp \left(-\beta t+\frac{\beta^{2}}{1-\beta / 2} \frac{E[W]}{2}\right) \\
& \leq \exp \left(\frac{-t^{2}}{2 E[W]+t}\right)
\end{aligned}
$$

5 Softening the interaction functional

Another application of Theorem 2 is a subtle improvement of the interaction functional used in the Bernstein-type inequality in [6]. For $f \in \mathcal{A}(\Omega)$ define

$$
J_{\mu}^{+}(f)=2\left(\sup _{\mathbf{x} \in \Omega} \sum_{l} E_{z \sim \mu_{l}}\left[\sum_{k: k \neq l} \sigma_{k}^{2}\left(f-S_{z}^{l} f\right) 1_{A_{l}}(z)\right]\right)^{1 / 2}
$$

where $A_{l}=A_{l}(\mathbf{x})$ is the subset of Ω_{l} defined by

$$
A_{l}=\left\{z \in \Omega_{l}: S_{z}^{l} \Sigma^{2}(f) \leq \Sigma^{2}(f)\right\}
$$

A_{l} is a set-valued function depending on $\mathbf{x} \in \Omega$. Clearly $J_{\mu}^{+}(f) \leq J_{\mu}(f)$ for any f.

The modification works as follows. Thanks to Theorem 2 the operator D can simply be replaced by V^{+}in Lemma 9, Lemma 10 and Proposition 14 in [6]. Proposition 15 in [6] then has to be replaced by the following.

Proposition 6 We have $V^{+}\left(\Sigma^{2}(f)\right) \leq J_{\mu}^{+}(f)^{2} \Sigma^{2}(f)$ for any $f \in \mathcal{A}(\Omega)$.
Proof. Fix $\mathbf{x} \in \Omega$. For any $z \in \Omega_{l}$

$$
S_{z}^{l} \Sigma^{2}(f)=\sum_{k} S_{z}^{l} \sigma_{k}^{2}(f)=\sigma_{l}^{2}(f)+\sum_{k: k \neq l} S_{z}^{l} \sigma_{k}^{2}(f)
$$

where we used the fact that $S_{z_{l}}^{l} \sigma_{l}^{2}(f)=\sigma_{l}^{2}(f)$, because $\sigma_{l}^{2}(f) \in \mathcal{A}_{l}(\Omega)$. Then

$$
\begin{aligned}
V^{+}\left(\Sigma^{2}(f)\right) & =\sum_{l} E_{z \sim \mu_{l}}\left[\left(\Sigma^{2}(f)-S_{z}^{l} \Sigma^{2}(f)\right)^{2} 1_{A_{l}}(z)\right] \\
& =\sum_{l} E_{z \sim \mu_{l}}\left[\left(\sum_{k} \sigma_{k}^{2}(f)-\sigma_{l}^{2}(f)-\sum_{k: k \neq l} S_{z}^{l} \sigma_{k}^{2}(f)\right)^{2} 1_{A_{l}}(z)\right] \\
& =\sum_{l} E_{z \sim \mu_{l}}\left[\left(\sum_{k: k \neq l}\left(\sigma_{k}^{2}(f)-S_{z}^{l} \sigma_{k}^{2}(f)\right)\right)^{2} 1_{A_{l}}(z)\right]
\end{aligned}
$$

Using $2 \sigma_{k}^{2}(f)=E_{\left(y, y^{\prime}\right) \sim \mu_{k}^{2}}\left(D_{y, y^{\prime}}^{k} f\right)^{2}$ we get, similar to [6],

$$
\begin{aligned}
& 4 V^{+}\left(\Sigma^{2}(f)\right) \\
&=\sum_{l} E_{z \sim \mu_{l}} {\left[\left(\sum_{k: k \neq l} E_{\left(y, y^{\prime}\right) \sim \mu_{k}^{2}}\left(D_{y, y^{\prime}}^{k} f\right)^{2}-S_{z}^{l} E_{\left(y, y^{\prime}\right) \sim \mu_{k}^{2}}\left(D_{y, y^{\prime}}^{k} f\right)^{2}\right)^{2} 1_{A_{l}}(z)\right] } \\
&=\sum_{l} E_{z \sim \mu_{l}}\left[\left(\sum_{k \neq l} E_{\left(y, y^{\prime}\right) \sim \mu_{k}^{2}}\left[\left(D_{y, y^{\prime}}^{k} f-D_{y, y^{\prime}}^{k} S_{z}^{l} f\right)\left(D_{y, y^{\prime}}^{k} f+D_{y, y^{\prime}}^{k} S_{z}^{l} f\right)\right]\right)^{2} 1_{A_{l}}(z)\right] \\
& \leq \sum_{l} E_{z \sim \mu_{l}}\left[\sum_{k: k \neq l} E_{\left(y, y^{\prime}\right) \sim \mu_{k}^{2}}\left[D_{y, y^{\prime}}^{k}\left(f-S_{z}^{l} f\right)\right]^{2}\right. \\
&\left.\quad \times \sum_{k: k \neq l} E_{\left(y, y^{\prime}\right) \sim \mu_{k}^{2}}\left[D_{y, y^{\prime}}^{k} f+D_{y, y^{\prime}}^{k} S_{z}^{l} f\right]^{2} 1_{A_{l}}(z)\right]
\end{aligned}
$$

by Cauchy-Schwarz. We use Hölder's inequality to bound this by

$$
\begin{aligned}
& \sum_{l} E_{z \sim \mu_{l}}\left[\sum_{k: k \neq l} E_{\left(y, y^{\prime}\right) \sim \mu_{k}^{2}}\left[D_{y, y^{\prime}}^{k}\left(f-S_{z}^{l} f\right)\right]^{2} 1_{A_{l}}(z)\right] \times \\
& \times \sup _{z \in A_{l}} \sum_{k: k \neq l} E_{\left(y, y^{\prime}\right) \sim \mu_{k}^{2}}\left[D_{y, y^{\prime}}^{k} f+D_{y, y^{\prime}}^{k} S_{z}^{l} f\right]^{2}
\end{aligned}
$$

We then bound the supremum by

$$
\begin{aligned}
& \sup _{z \in A_{l}} \sum_{k: k \neq l} E_{\left(y, y^{\prime}\right) \sim \mu_{k}^{2}}\left[D_{y, y^{\prime}}^{k} f+D_{y, y^{\prime}}^{k} S_{z}^{l} f\right]^{2} \\
\leq & \sup _{z \in A_{l}} \sum_{k: k \neq l} E_{\left(y, y^{\prime}\right) \sim \mu_{k}^{2}}\left[2\left(D_{y, y^{\prime}}^{k} f\right)^{2}+2\left(D_{y, y^{\prime}}^{k} S_{z}^{l} f\right)^{2}\right] \\
= & 4 \sum_{k: k \neq l} \sigma_{k}^{2}(f)+4 \sup _{z \in A_{l}} S_{z}^{l} \sum_{k: k \neq l} \sigma_{k}^{2}(f) \\
\leq & 4\left(\Sigma^{2}(f)+\sup _{z \in A_{l}} S_{z}^{l} \Sigma^{2}(f)\right) \leq 8 \Sigma^{2}(f),
\end{aligned}
$$

where the last inequality follows from the definition of A_{l}. To conclude

$$
\begin{aligned}
V^{+}\left(\Sigma^{2}(f)\right) & \leq 2 \sum_{l} E_{z \sim \mu_{l}}\left[\sum_{k: k \neq l} E_{\left(y, y^{\prime}\right) \sim \mu_{k}^{2}}\left[D_{y, y^{\prime}}^{k}\left(f-S_{z}^{l} f\right)\right]^{2} 1_{A_{l}}(z)\right] \Sigma^{2}(f) \\
& \leq 4 \sup _{\mathbf{x} \in \Omega} \sum_{l} E_{z \sim \mu_{l}}\left[\sum_{k: k \neq l} \sigma_{k}^{2}\left(f-S_{z l}^{l} f\right) 1_{A_{l}}(z)\right] \Sigma^{2}(f) \\
& =\left(J_{\mu}^{+}\right)^{2}(f) \Sigma^{2}(f) .
\end{aligned}
$$

Substitution in the appropriately modified Proposition 14 of [6] then gives the main result in [6] with J_{μ} replaced by J_{μ}^{+}.

References

[1] S.Boucheron,G.Lugosi,P.Massart, Concentration Inequalities using the entropy method, Annals of Probability 31, Nr 3, 2003
[2] S.Boucheron, G.Lugosi, P.Massart, On concentration of self-bounding functions, Electronic Journal of Probability Vol. 14 (2009), Paper no. 64, 1884-1899, 2009
[3] S. Boucheron, G. Lugosi, P. Massart. Concentration Inequalities, Oxford University Press (2013)
[4] A.Maurer. Concentration inequalities for functions of independent variables. Random Structures and Algorithms 29: 121-138, 2006
[5] A.Maurer, Thermodynamics and concentration. Bernoulli 18.2 (2012): 434-454.
[6] Maurer, A. (2017). A Bernstein-type inequality for functions of bounded interaction. arXiv preprint arXiv:1701.06191.

