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Abstract. We consider the problem of learning in an environment of
classification tasks. Tasks sampled from the environment are used to im-
prove classification performance on future tasks. We consider situations
in which the tasks can be divided into groups. Tasks within each group
are related by sharing a low dimensional representation, which differs
across the groups. We present an algorithm which divides the sampled
tasks into groups and computes a common representation for each group.
We report experiments on a synthetic and two image data sets, which
show the advantage of the approach over single-task learning and a pre-
vious transfer learning method.
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1 Introduction

Transfer learning uses the experience gathered from previous learning tasks in
order to improve learning a new task. In the context of machine learning, past
experience is provided by a collection of training sets, each sampled from a
specific task. The underlying assumption is that the tasks belong to the same
environment and share common properties. Uncovering these properties should
thus enhance learning future tasks in the environment.

An important approach to transfer learning relies on the assumption that all

the tasks are mutually related, in the sense that they share the same underly-
ing representation, see [1, 2, 6, 7, 10, 13] and references therein. This requirement
may be too strong for heterogeneous environments. As an illustrative example,
consider object recognition involving different geometric invariances, such as ro-
tation, scaling, illumination etc., where only one invariance is relevant for any
given task.

The main contribution of this paper is a method to learn and represent the
structure of such a heterogeneous environment. Our method naturally extends a
previous method for multi-task and transfer learning with linear representations
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[2, 10]. Furthermore, we connect this approach to previous work in the context
of spectral regularization [3] and collaborative filtering [11].

Previous work on task clustering [5, 8, 12, 14] considers tasks to be related if
the corresponding weight vectors are close to each other. In contrast, our ap-
proach assumes that tasks within the same group are related if their weight
vectors span a low dimensional subspace. For example, in a binary classifica-
tion task a target vector and its negative are far from each other in distance,
but – lying in a one-dimensional subspace – closely related according to our
assumption.

The paper is organized as follows. In Section 2, we introduce the transfer
learning problem. In Section 3, we present our model for transfer learning over a
heterogeneous environment. In Section 4 we describe the algorithmic implemen-
tation of the model. Next, in Section 5 we present numerical experiments with
the algorithm. Finally, in Section 6 we present our conclusions.

2 Transfer Learning

We are interested in learning classification tasks, as they occur in a prescribed en-

vironment. For simplicity, we restrict ourselves to linear classification functions.
However, our considerations apply to kernel methods as well as to regression or
other learning problems.

Following [6], we regard an environment as a probability measure ρ on a set
of learning tasks and, since the tasks we consider are described by weight vectors,
we regard ρ as a probability measure on R

d.
Information on the environment may be obtained by the following two-step

procedure

• draw a weight vector w ∈ R
d from ρ

• generate a sample z ∈
(

R
d × {−1, 1}

)m
using w.

The vector w above corresponds to a classification function

f(x) = sign (〈w, x〉) ,

x ∈ R
d. The sample (training set) z = ((x1, y1), . . . , (xm, ym)) is obtained by

sampling the function f at m random locations x1, . . . , xm with labelling noise.
The above procedure is then repeated n times, to yield a collection of n training
sets

Z = (z1, . . . , zn).

Each of the zt corresponds to a different classification task in the environment,
for t = 1, . . . , n. We have assumed, for simplicity, that the samples z1, . . . , zn

have the same size, m, but what follows applies also when the sample sizes are
different.

Transfer learning extracts structural knowledge from Z, so as to enhance
learning a future task drawn from the environment. This is particularly impor-
tant when the number of examples for each task is relatively small in comparison
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to the number of parameters. In this case, single-task learning – learning each
task in isolation – leads to poor performance. However, if the tasks in the envi-
ronment are related, transfer learning may work well [6, 10]. Thus, the problem
is ultimately that of uncovering and exploiting relationships between the tasks.

As a very simple example, suppose that all the tasks are equal. In this case, a
good transfer learning algorithm would combine all training sets to learn a single
task. A more realistic situation is one in which all the tasks’ weight vectors are a
linear combination of a few feature vectors. A good transfer learning algorithm
would learn these feature vectors from the data Z. A classical approach, which
goes back to work on learning to learn and multi-task learning [6, 7], is to search
for such a low dimensional representation shared by all the tasks. Knowledge
of the relevant features can reduce the burden of high dimensionality to the
estimation of a small number of coefficients.

We consider a linear representation described by a matrix T ∈ R
d×d, which

maps the raw representation x to the feature vector Tx. Our first step is to
design a quantity which measures the performance of T relative to a task. If T
is fixed, we learn a weight vector from a sample z by regularization, that is, we
solve the problem

r(T, z) = min
v∈Rd

{

1

m

m
∑

i=1

` (〈v, Txi〉, yi) + λ‖v‖2 + ‖T‖2

2

}

(1)

where λ is a positive parameter, ‖v‖2 = 〈v, v〉, ` a loss function and ‖T‖2 denotes
the Frobenius norm of matrix T . The minimizing vector in (1) – let us call it
v(T, z) – is then used in the classification of future inputs preprocessed by T . Note
that, with this notation, the target vector w mentioned previously corresponds
to T>v.

The term ‖T‖2

2
plays no role in finding v(T, z), but it allows one to regard

r(T, z) as a measure of the learning performance of the representation T on the
sample z. Indeed, if the term ‖T‖2

2
were omitted, the quantity r(γT, z) would

decrease in γ and would converge as γ → ∞ to the minimal empirical error of a
linear function on the data z.

We now consider a set of tasks as represented by the multi-sample Z. A good
representation T is one which gives good learning performance, on average, over
the tasks. Hence, we may define the quantity

R(T,Z) =
1

n

n
∑

t=1

r(T, zt)

and learn T by solving the problem

minimize
T∈Rd×d

R(T,Z). (2)

We note that this problem is conceptually equivalent to the multi-task feature
learning algorithm in [2]. Let us denote by H(Z) the minimum in (2). Intuitively,
this quantity is a measure of heterogeneity of the training sets. That is, the
smaller H(Z) the less heterogeneous (more related) the tasks, in that it is possible
to find a common representation which fits the training sets Z well.
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3 Heterogeneous Environment

The approach outlined above relies on the assumption that all the tasks are
mutually related in the sense that they share the same representation. This
requirement may be too strong when the environment is heterogeneous.

3.1 Method

Assume that there are several groups of tasks, so that the tasks within each
group are related but tasks from different groups have little in common. If I ⊆
{1, . . . , n} is the set of indices of the tasks within such a group, we expect the
training data Z(I) := (zt)t∈I to be highly related, that is, the heterogeneity
measure H(Z(I)) to be small.

Our goal therefore is to partition the training set Z into K groups that
minimize average heterogeneity. For this purpose, we let P be the set of all
partitions of size K of the set {1, . . . , n} and solve the problem

minimize
{I1,...,IK}∈P

K
∑

k=1

|Ik|
n

H(Z(Ik)). (3)

The factors |Ik|
n

weight each group in proportion to its size.
This approach can be equivalently seen as that of learning a library of K

feature maps T = (T1, . . . , TK), where each Tk is a d×d matrix representing the
k-th group of tasks in the environment. To see this, we rewrite problem (3) as

minimize
{I1,...,IK}∈P

minimize
T1,...,TK

K
∑

k=1

|Ik|
n

R(Tk,Z(Ik)). (4)

Interchanging the minimization over the partitions and the matrices Tk, we ob-
tain

minimize
T1,...,TK

{

1

n

n
∑

t=1

K

min
k=1

r(Tk, zt)

}

. (5)

This observation reformulates the combinatorial optimization problem (3) as
a continuous optimization problem and is analogous to the passage from the
assignment problem to the objective function of k-means clustering.

When K = 1 problem (5) reduces to problem (2). For K > 1, the minimiza-
tion over k effects an assignment of tasks to groups. The h-th group consists of
those tasks t for which the regularization error r(Tk, zt) is minimal for k = h.
Therefore, the matrix Tk is a common representation for the tasks of the corre-
sponding group.

We now describe how the library T is used to learn a new task from a given
training set z. First, we compute the weight vectors v(Tk, z) for k = 1, . . . ,K
and the associated minimal values r(Tk, z) in (1). Second, we assign the task to
the group

h = arg
K

min
k=1

r(Tk, z).
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The corresponding weight vector, v(Th, z), is then used for the classification of
future data from the same task, preprocessed by Th.

The two norms appearing in the definition (1) of r (T, z) have an effect of

complexity regularization, which we briefly sketch. The term ‖T‖2

2
controls the

complexity of candidate libraries. If a large number of tasks have been observed
in the past, the quantity minimized in (5) is, with high probability in Z and
uniformly in all libraries T, a good upper estimate for the quantity

Ez

K

min
k=1

r (Tk, z) ,

where the expectation is over a training set generated from a random task drawn
from the environment. Similarly, the term ‖v‖2

regularizes the complexity of
candidate weight vectors and has the effect that r (T, z) is, for sufficient sample
size, a good upper estimate for the expected classification error incurred by
the use of v(T, z). Combining these observations, one finds that the quantity
minimized by our method is close to a high-probability upper bound on the
error incurred by the above algorithm using T on future tasks.

These arguments, which give a statistical justification for our method, are
made rigorous in [4] for a closely related model.

3.2 Connection to Spectral Regularization

We now explain why the learned representations T1, . . . , TK in (5) are encouraged
to be low dimensional. We first analyse the case K = 1. Let us use the notation
W = [w1, . . . , wn] if w1, . . . , wn ∈ R

d.

Lemma 1. Problem (2) is equivalent to

minimize
W∈Rd×n

{

1

mn

n
∑

t=1

m
∑

i=1

`(〈wt, xti〉, yti) + γ‖W‖1

}

(6)

where γ = 2
√

λ and ‖W‖1 is the `1 norm of the singular values of W . Moreover

if Ŵ solves (6) and T̂ solves (2), then

T̂>T̂ = (λŴŴ>)
1

2 .

Proof. We define the matrix D = T>T . If T is full rank, we have, for every
training set z, that

r(T, z) = min
w∈Rd

{

ˆ̀(w, z) + λ〈w,D−1w〉 + trD
}

,

where ˆ̀(w, z) := 1

m

∑m

i=1
`(〈w, xi〉, yi). Thus, problem (2) becomes

inf
D�0

min
W∈Rd×n

{

1

n

n
∑

t=1

ˆ̀(wt, zt) + λtr(D−1WW>) + trD

}

.
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Interchanging the infimum with the minimum and following [2], the infimum

over D is realized by (λWW>)
1

2 . The result then follows. ut

We note that regularization with ‖W‖1, the trace norm, has originally been
considered by [11] in the context of collaborative filtering. As shown in [9], the
trace norm is the convex envelope of the rank function in the unit ball of matrices.
This provides some intuition as to why the optimal matrix Ŵ (and, by Lemma
1, T̂ ) has low rank.

We now consider the general case K ≥ 1. If W is a d × n matrix and I ⊆
{1, . . . , n}, we let W (I) = [wt : t ∈ I]. The proof of the following result is
established along similar lines as in Lemma 1.

Theorem 1. Problem (3) is equivalent to the problem

minimize
W∈Rd×n

{

1

nm

n
∑

t=1

m
∑

i=1

`(〈wt, xti〉, yti) + γ min
{I1,...,IK}∈P

K
∑

k=1

‖W (Ik)‖1

}

.

The above theorem states that problem (3) is equivalent to a regularization
problem in which the tasks are partitioned into groups, so that the associated
weight vectors have small trace norm on average. Regarding the trace norm as
an approximation of the rank, we interpret this regularization as favoring groups
of tasks which lie in low dimensional subspaces.

4 Learning Algorithm

We now describe an algorithm for solving problem (3). The algorithm performs
stochastic gradient descent on the objective function (5). At each iteration, it
selects a task index t ∈ {1, . . . , n} at random and computes the gradient3 of the
function

K

min
k=1

r(Tk, zt) .

Only the matrix which realizes this minimum needs to be updated. This step
requires the computation of the K vectors v(Tk, zt) for the current values of the
matrices T1, . . . , TK , that is, the solution of K standard regularization problems.
Thus, if the time complexity for solving each of these problems is C(m, d) then
the total time complexity per iteration is O(KC(m, d)+md2). This linear depen-
dence on K is appealing in practice since it allows for more complex models. We
also note that, since the optimal matrices in the library will be low dimensional,
we may further accelerate the algorithm by using rectangular matrices Tk with
a small but sufficient number of rows.

Although this algorithm is guaranteed to converge, the objective function (5)
is non-convex and hence the limiting point is not necessarily a global solution.
We note, in passing, that we are not aware of a single multi-task method on

3 We ignore the issue of non-differentiability, because the objective function is almost
everywhere differentiable.
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Algorithm 1

Inputs: number of groups K, regularization parameter λ > 0, learning rate η > 0,
training sets zt = {(xt1, yt1), . . . , (xtm, ytm)}, t = 1, . . . , n.
Initialization: Randomly choose d × d real matrices T1, . . . , TK .
Repeat until convergence of the objective

Draw t at random from {1, . . . , n}
for k = 1, . . . , K do

Compute a solution v(Tk, zt) of (1)
end for

Set h = arg
K

min
k=1

r(Tk, zt) , v̄ = v(Th, zt)

Set Th = Th − η

m

m
P

i=1

`′ (〈v̄, Thxti〉, yti) v̄x>

ti − 2ηTh

heterogeneous task environments that is convex. However, for the purposes of
finding a good local minimum, the following initialization heuristic has been
observed to lead to good empirical results. First we train a single feature map
(K = 1) until convergence. Then from this map two slightly mutated matrices
are created to initialize the library with K = 2 and the process is repeated up
to the actual K we aim for. As we shall see in Section 5, in our experiments
the algorithm has always converged to a good local minimum, in that the great
majority of the tasks were assigned to correct groups.

5 Experiments

In classification experiments performed with synthetic and real data, we have
verified the following hypotheses.

– The learning algorithm correctly distinguishes the heterogeneous groups of
tasks and determines the appropriate subspaces within each group.

– The algorithm improves significantly over that in [2] (case K = 1) in terms
of the transfer error on new tasks.4 Moreover, when allowing more complex
models (that is, when K is larger than the actual number of groups in the
data) the transfer error does not improve.

– The performance improves monotonically with the number n of tasks avail-
able for training and deteriorates with the number G of underlying groups.

In all the experiments, we have used the SVM hinge loss and tuned the
regularization parameter λ using cross validation. Choosing K was also done by
cross validation, as we discuss below.

5.1 Synthetic Data

Environment In the first experiment, we assume that the environment distri-
bution ρ is a uniform mixture of a number G of group-specific measures ρk on

4 Average misclassification error on new tasks.
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Fig. 1. Synthetic data (with G = 2). Plot of transfer error and objective function (5)
versus K for n = 1000 tasks. The values of the objective have been rescaled to fit the
plot. The error obtained using the identity matrix (training the tasks independently)
was 0.35.

the unit sphere Sd−1 in R
d. In other words, ρ = 1

G

∑G

k=1
ρk. A task is chosen

by selecting the k-th group with probability 1

G
and then drawing a task weight

vector w from ρk.
We further assume that each measure ρk is concentrated and uniform on the

intersection of a low dimensional subspace of R
d with Sd−1 and that these sub-

spaces are mutually orthogonal. Each task is a binary classification represented
by a vector w ∈ Sd−1. An input x for each task is sampled uniformly on Sd−1

and the outputs are obtained by taking the sign of 〈w, x〉.
Our experiment consists in using the training set sampled from the environ-

ment to identify the subspace on which each group of tasks lies and subsequently
to reliably predict membership in such a subspace for new tasks drawn from the
distribution ρ.

Results We first consider an environment with two groups of tasks (that is,
G = 2), each of which lies on a 2-dimensional space of R

100. We use m = 50
examples for training on each task and compute the transfer error over 200 new
tasks sampled from the same environment, training on 50 examples and testing
on 150 examples. In experiments with the synthetic data, the algorithm typically
converged in less than 100,000 iterations.

As shown in Figure 1, using K ≥ 2 yields a large improvement over grouping
all tasks in the same group. Moreover, adding more than two groups in the
model has a negative effect, the reason being that all matrices Tk are used in the
obtained solution. This means that for K > 2 the objective function continues
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Fig. 2. Synthetic data (with G = 2). Plot of transfer error versus n using K = 1, 2, 4.

to decrease, as demontrated in the figure. Thus, K can be selected using cross
validation on the training tasks but cannot be selected using the objective (5).
Note that cross validation is meaningful when there is a sufficient number of
related tasks, even if the sample per task is small.

In the case K = 2, the resulting matrices Tk reflect the structure of the envi-
ronment as each of them projects on a 2-dimensional subspace of R

100. Specifi-
cally, we found that the two largest singular values of T1 and T2 account for 97%
of the spectrum, whereas for K = 1 the four largest singular values are needed.
In addition, we have verified that the tasks are assigned to the correct groups
with 99% accuracy.

An interesting observation is that even for K 6= 2 the 4-dimensional support
of the whole environment is correctly identified. Thus, for K = 1 the obtained
matrix projects on a 4-dimensional subspace, whereas for K = 4 the matrices
project on parts of this subspace.

Other issues relate to the effects of the dimensions of the problem on transfer
error. In Figure 2, we verify the known result – see e.g. [6] – that the error
decreases with n. Note that for small values of n, the method performs better
with K = 1 than with K = 4 and for even smaller values, it outperforms K = 2.
The reason is that with a small number of tasks the data may be insufficient
for learning each of the actual two subspaces but sufficient for learning the joint
subspace.

Another effect is that of G, the actual number of underlying subspaces. Our
method performs well with values of G much larger than 2 but as G increases
the problem inevitably becomes harder. In Figure 3, we plot the error obtained
by training our method and tuning K for different values of G.
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Fig. 3. Synthetic data. Plot of transfer error versus G using n = 1000.

5.2 Character Recognition Experiments

We now describe two experiments with images of handwritten characters5, which
further illustrate how our method works. The character images were obtained
with a real camera. We also note that rotation/scaling (see below) of the char-
acter shown in an image was done mechanically during image acquisition. In the
experiments, we have treated images simply as vectors of pixels and no use of
image preprocessing techniques or special properties of image data was made.

Projection on Image Parts We consider the problem of invariant classifica-
tion in the presence of noise. Every task is a pairwise classification of 28 × 56
images of characters. One half of the image contains the relevant character under
an arbitrary rotation, whereas the other half contains a randomly chosen char-
acter also under an arbitrary rotation. There are two groups of tasks occurring
with equal probability: tasks in which the relevant character appears on the left
half of the image and tasks in which it appears on the right half. For example,
the images of Figure 4 are examples of a task (classifying 6 versus 1) of the
“right” group.

To train a library we selected pairs of alphabetic characters. Since we wish
to obtain a library of features that represent the broader structural properties
of the environment, namely rotation invariance on one half of the image with
simultaneous irrelevance on the other half, we tested the learned library on
samples generated from the digit character set (after removing digit 9). In this
way we directly measured how well the representation transferred to novel but

5 Available at http://www.andreas-maurer.eu/similarity.htm
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Fig. 4. Character recognition (left-right data set). Example images from one classifi-
cation task (6 versus 1) in the group that focuses on the right part of the image.

Independent K = 1 K = 2

0.27 0.036 0.013

Table 1. Character recognition (left-right data set). Transfer error for different meth-
ods.

structurally similar problems. We trained our algorithm until convergence, which
was achieved in 400,000 iterations.

To measure the transfer error, we generated 500 tasks of pairwise classifica-
tion from the digits data set. For each of these tasks, a sample of size 10 was
chosen to train a classifier using the library found during the training phase. The
performance of this classifier was then tested on 40 examples chosen from the
same task. The high dimensionality of the input space (1568) and the small sam-
ple size (10) explain the high error (0.27) of learning each task independently,
as Table 1 shows. At the same time, the large number of tasks observed for the
training of the feature maps (1000) accounts for the spectacular improvement
obtained by transfer learning (K = 1).

A convenient way to visualize the effect of the resulting maps on the image
vector is to display their right singular vectors as 28 × 56 images. In Figure 5,
we present these after normalization to the range [−1, 1] and mapping of zero to
gray. We show only the singular vectors corresponding to the 6 largest singular
values for T and the 3 largest singular values for T1 and T2. The concentric
features in both halves clearly reflect the rotational invariance properties present
in the training data. In the single map case, the map does not distinguish the
relevance of each part of the image relative to the tasks, whereas in the two-map
case, matrix T1 represents the invariance properties of the “left” group of tasks
and matrix T2 those of the “right” group. In addition, the singular values of T ,
T1 and T2 (Figure 6) show that this specialization of T1 and T2 results in more
concise representations within each group of tasks. That is, the effective ranks of
T1 and T2 equal 4, whereas that of T equals 8 and hence, setting K = 2 allows
us to learn subspaces with lower dimensionalities.

Finally, in Table 2 we verify that the assignment of tasks into groups reflects
the left-right structure of the data set. Here, the “Left” (“Right”) percentage was
measured over the sample that corresponds to classification on the left (right)
half of the image.
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T

T1

T2

Fig. 5. Character recognition (left-right data set). Dominant right singular vectors of:
T learned with K = 1 (top); T1 and T2 learned with K = 2 (bottom). See text for
description.
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Fig. 6. Character recognition (left-right data set). Spectrum of T learned with K = 1
(top); spectra of T1 (bottom-left) and T2 (bottom-right), learned with K = 2.

Rotation and Scale Invariance Our final experiment is set in an environment
which contains a mixture of tasks involving rotation invariant and scale invariant
character recognition, with scale factors ranging from 2/3 to 3/2 (see Figure 7).
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T1 T2

All digits (left & right) 48.2% 51.8%
Left 99.2% 0.8%
Right 1.4% 98.6%

Training data 50.7% 49.3%

Table 2. Character recognition (left-right data set). Assignment of tasks in groups,
when training with K = 2. The first three rows show percentage of assignments for the
transfer tasks, the last row for the training tasks.

As in the previous experiment, our libraries were trained using pairwise classi-
fication of alphabetic characters and were transferred on pairwise classification
of digits. Because of the difficulties caused by scale invariance, the images were
preprocessed using a Gaussian kernel, with 1000 centers chosen randomly from
the training data and Gaussian kernel width of 1/

√
8. Again, 400,000 iterations

were needed for training the algorithm.

Unlike the previous experiments, it is now unclear what the features relevant
to each group of tasks may be, or how the feature space relevant to rotation
invariant recognition relates to that of scale invariant recognition. To investigate
the potential of our method we ask two questions:

1. Is the grouping method (with K = 2) able to improve the transfer perfor-
mance of the more standard transfer learning algorithm with K = 1?

2. To what extent does the grouping reflect our intuition of rotation and scale
invariant problems as corresponding to two distinct groups of tasks?

For training our method, we generated 2000 samples of size 10 (5 per class)
from the alphabetic set, selecting rotation and scale invariant tasks with equal
probability. The transfer data was generated as in the previous experiment: 500
tasks drawn from the digits, 10 training examples per task, 40 examples for
testing.

As shown in Table 3, we observe again a dramatic improvement from inde-
pendent learning to transfer learning. There is also an observable advantage of
the grouping method but not as pronounced as in the previous experiments. The
most likely explanation is that the two feature subspaces may now be far from
orthogonal, unlike the previous experiments.

To answer the second of the above questions we counted the assignments
to T1, T2 within exclusively rotation or scale invariant tasks (Table 4). We see a
certain specialization of T2 to rotation invariant tasks and of T1 to scale invariant
tasks, but it is not as clearly defined as in the previous experiment. Here it
is important to realize that grouping into rotation and scale invariant tasks
agrees with a certain human intuition, but there may well be other task-grouping
criteria (for example rounded characters versus characters with sharp corners)
which may be necessary for further improving performance.
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Fig. 7. Character recognition (rotation-scaling data set). Example images from a clas-
sification task in the rotationally invariant group (top) and one in the scale invariant
group (bottom).

Independent K=1 K=2

0.17 0.018 0.015

Table 3. Character recognition (rotation-scaling data set). Transfer error for different
methods.

T1 T2

All digits (rotation & scale) 44.8% 55.2%
Rotation invariance 10% 90%
Scale invariance 72% 28%

Training data 46.5% 53.5%

Table 4. Character recognition (rotation-scaling data set). Assignment of tasks in
groups, when training with K = 2. The first three rows show percentage of assignments
for the transfer tasks, the last row for the training tasks.

6 Summary

We have presented a method for transfer learning over environments in which
tasks are concentrated on a number of low dimensional subspaces (heterogeneous

environments). Our approach, which is justified theoretically by a generalization
bound on the transfer error [4], uses gradient descent to learn a library of feature
maps that describe such subspaces. The method naturally extends previous work
on multi-task learning which considered only one common group of tasks [2].

We have reported experiments with synthetic and real data. These exper-
iments are illustrative examples of the many real problems in which multiple
heterogeneous tasks occur. They clearly demonstrate that our method is effec-
tive in identifying both the groups of tasks and the underlying common feature

maps. Moreover, the method outperforms both single-task learning and the pre-
cursor method [2], which corresponds to the case that K = 1. We believe the
work is a significant improvement over [2] (which in turn has shown state-of-
the-art results in a number of benchmark data sets), since any algorithm using
K = 1 cannot distinguish the different subspaces on which the tasks may lie.

We have also briefly sketched an interpretation of our approach in terms of
spectral regularization. We speculate that following this observation our method
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can be easily applied in the context of collaborative filtering, see e.g. [11]. An-
other interesting question that can be the topic of future research is to study
conditions on the environment which ensure convergence of the algorithm to a
good local minimum.
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