Another version of Bernstein’s inequality
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The purpose of this note is to remove one of the boundedness assumptions
in Bernstein’s inequality as stated in [1], Theorem 3. All undefined notation is
taken from [1].

Let f:Q=T[/_,Q — R and consider the three conditions
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Then (A) = (B) = (C). The last condition is sufficient for the following
version of Bernstein’s inequality, which extends Theorem 2.10 in [2] from sums
to general functions.

Theorem 1 Let f : Q@ = [[I_, Q; — R be measurable and suppose that (C)
holds. Then fort >0
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By rescaling it suffices to prove this for b = 1. The next Lemma replaces
Lemma 9 in [1].

Lemma 2 Suppose (C) holds with b=1. Then for all § >0
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Proof. First we get from the variational property of variance, that
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where we used Jensen’s inequality to get Fy, [exp (8 (f — Ef))] > 1 for the second
inequality. From monotone convergence and (C) we then get
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The next proposition replaces Proposition 16 in [1].

Proposition 3 Suppose that f : Q@ — R is such that (C) holds with b= 1, and
that

D (2*(f)) < a® 22(f),
with a > 0. Then for all t > 0
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Proof. We can assume @ > 0. Let 0 < v < 8 < 1/(14a/2) and set § =
v/ (a(1 —=%)). Then 42/ (2 (1- 7)2) < 60 < 2/a®. By the Lemma 2
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where the second inequality follows from the decoupling lemma (Lemma 13 in

1]). Subtract 72/ (2 1- 7)2) St (7) to get
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Since 72/ (2 (1- 7)2) < 0 this simplifies, using the value of 6, to
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On the other hand 6 < 2/a?, so the assumed self-boundedness of %2 (f) and
Lemma 12 in [1] give
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Combining (1) and (2) to get a bound on Sy (7y) gives
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and from Lemma 8 in [1] and Lemma 15 in [1]
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Theorem 1 now follows from combining Proposition 3 with Proposition 17
in [1].
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