Another version of Bernstein's inequality

December 16, 2017

The purpose of this note is to remove one of the boundedness assumptions in Bernstein's inequality as stated in [1], Theorem 3. All undefined notation is taken from [1].

Let $f: \Omega=\prod_{i=1}^{n} \Omega_{i} \rightarrow \mathbb{R}$ and consider the three conditions
$(A)=\left(\left(f-E_{k} f\right) \leq b\right.$ for all $\left.k\right)$
$(B)=\left(E_{k}\left[\left(f-E_{k} f\right)^{m}\right] \leq \frac{1}{2} m!\sigma_{k}^{2}(f) b^{m-2}\right.$ for $m \geq 2$ and all $\left.k\right)$
$(C)=\left(\sum_{k=1}^{n} E_{k}\left[\left(f-E_{k} f\right)^{m}\right] \leq \frac{\Sigma^{2}(f)}{2} m!b^{m-2}\right.$ for $\left.m \geq 2\right)$
Then $(A) \Longrightarrow(B) \Longrightarrow(C)$. The last condition is sufficient for the following version of Bernstein's inequality, which extends Theorem 2.10 in [2] from sums to general functions.

Theorem 1 Let $f: \Omega=\prod_{i=1}^{n} \Omega_{i} \rightarrow \mathbb{R}$ be measurable and suppose that (C) holds. Then for $t>0$

$$
\operatorname{Pr}\{f-E f>t\} \leq \exp \left(\frac{-t^{2}}{2 E\left[\Sigma^{2}(f)\right]+\left(2 b+J_{\mu}\right) t}\right)
$$

By rescaling it suffices to prove this for $b=1$. The next Lemma replaces Lemma 9 in [1].

Lemma 2 Suppose (C) holds with $b=1$. Then for all $\beta \geq 0$

$$
S_{f}(\beta) \leq \frac{\beta^{2} E_{\beta f}\left[\Sigma^{2}(f)\right]}{2(1-\beta)^{2}}
$$

Proof. First we get from the variational property of variance, that

$$
\begin{aligned}
\sigma_{k, \beta f}^{2}(f) & \leq E_{k, \beta f}\left[\left(f-E_{k}(f)\right)^{2}\right]=\frac{E_{k}\left[\left(f-E_{k}(f)\right)^{2} e^{\beta(f-E f)}\right]}{E_{k}\left[e^{\beta(f-E f)}\right]} \\
& \leq E_{k}\left[\left(f-E_{k}(f)\right)^{2} e^{\beta(f-E f)}\right]
\end{aligned}
$$

where we used Jensen's inequality to get $E_{k}[\exp (\beta(f-E f))] \geq 1$ for the second inequality. From monotone convergence and (C) we then get

$$
\begin{aligned}
\sum_{k=1}^{n} \sigma_{k, \beta f}^{2}(f) & \leq \sum_{k=1}^{n} E_{k}\left[\left(f-E_{k} f\right)^{2} e^{\beta\left(f-E_{k} f\right)}\right]=\sum_{n=0}^{\infty} \sum_{k=1}^{n} \frac{\beta^{m}}{m!} E\left[\left(f-E_{k} f\right)^{m+2}\right] \\
& \leq \frac{\Sigma^{2}(f)}{2} \sum_{m=0}^{\infty}(m+1)(m+2) \beta^{m}
\end{aligned}
$$

Thus

$$
\begin{aligned}
S_{f}(\beta) & \leq E_{\beta f}\left[\int_{0}^{\beta} \int_{t}^{\beta} \sum_{k=1}^{n} \sigma_{k, \beta f}^{2}(f) d s d t\right] \\
& \leq \frac{E_{\beta f}\left[\Sigma^{2}(f)\right]}{2} \sum_{m=0}^{\infty}(m+1)(m+2) \int_{0}^{\beta} \int_{t}^{\beta} s^{m} d s d t \\
& =\frac{E_{\beta f}\left[\Sigma^{2}(f)\right]}{2} \beta^{2} \sum_{m=0}^{\infty}(m+1) \beta^{m}=\frac{\beta^{2} E_{\beta f}\left[\Sigma^{2}(f)\right]}{2(1-\beta)^{2}}
\end{aligned}
$$

The next proposition replaces Proposition 16 in [1].
Proposition 3 Suppose that $f: \Omega \rightarrow \mathbb{R}$ is such that (C) holds with $b=1$, and that

$$
D\left(\Sigma^{2}(f)\right) \leq a^{2} \Sigma^{2}(f)
$$

with $a \geq 0$. Then for all $t>0$

$$
\operatorname{Pr}\{f-E f>t\} \leq \exp \left(\frac{-t^{2}}{2 E\left[\Sigma^{2}(f)\right]+(2+a) t}\right)
$$

Proof. We can assume $a>0$. Let $0<\gamma \leq \beta<1 /(1+a / 2)$ and set $\theta=$ $\gamma /(a(1-\gamma))$. Then $\gamma^{2} /\left(2(1-\gamma)^{2}\right)<\theta<2 / a^{2}$. By the Lemma 2

$$
\theta S_{f}(\gamma) \leq \frac{\gamma^{2}}{2(1-\gamma)^{2}} E_{\gamma f}\left[\theta \Sigma^{2}(f)\right] \leq \frac{\gamma^{2}}{2(1-\gamma)^{2}}\left(S_{f}(\gamma)+\ln E\left[e^{\theta \Sigma^{2}(f)}\right]\right)
$$

where the second inequality follows from the decoupling lemma (Lemma 13 in [1]). Subtract $\gamma^{2} /\left(2(1-\gamma)^{2}\right) S_{f}(\gamma)$ to get

$$
S_{f}(\gamma)\left(\theta-\frac{\gamma^{2}}{2(1-\gamma)^{2}}\right) \leq \frac{\gamma^{2}}{2(1-\gamma)^{2}} \ln E\left[e^{\theta \Sigma^{2}(f)}\right]
$$

Since $\gamma^{2} /\left(2(1-\gamma)^{2}\right)<\theta$ this simplifies, using the value of θ, to

$$
\begin{equation*}
S_{f}(\gamma) \leq \frac{\gamma a}{2(1-(1+(a / 2)) \gamma)} \ln E\left[e^{\theta \Sigma^{2}(f)}\right] \tag{1}
\end{equation*}
$$

On the other hand $\theta<2 / a^{2}$, so the assumed self-boundedness of $\Sigma^{2}(f)$ and Lemma 12 in [1] give

$$
\begin{equation*}
\ln E\left[e^{\theta \Sigma^{2}(f)}\right] \leq \frac{\theta}{1-a^{2} \theta / 2} E\left[\Sigma^{2}(f)\right]=\frac{\gamma / a}{1-(1+a / 2) \gamma} E\left[\Sigma^{2}(f)\right] \tag{2}
\end{equation*}
$$

Combining (1) and (2) to get a bound on $S_{f}(\gamma)$ gives

$$
\int_{0}^{\beta} \frac{S_{f}(\gamma) d \gamma}{\gamma^{2}} \leq E\left[\Sigma^{2}(f)\right] \int_{0}^{\beta} \frac{d \gamma}{2(1-(1+a / 2) \gamma)^{2}}=\frac{E\left[\Sigma^{2}(f)\right]}{2} \frac{\beta}{1-(1+a / 2) \beta}
$$

and from Lemma 8 in [1] and Lemma 15 in [1]

$$
\begin{aligned}
\operatorname{Pr}\{f-E f>t\} & \leq \inf _{\beta>0} \exp \left(\beta \int_{0}^{\beta} \frac{S_{f}(\gamma)}{\gamma^{2}} d \gamma-\beta t\right) \\
& \leq \inf _{\beta \in(0,1 /(1 / 3+a / 2))} \exp \left(\frac{E\left[\Sigma^{2}(f)\right]}{2} \frac{\beta^{2}}{1-(1+a / 2) \beta}-\beta t\right) \\
& \leq \exp \left(\frac{-t^{2}}{2\left(E\left[\Sigma^{2}(f)\right]+(1+a / 2) t\right)}\right)
\end{aligned}
$$

Theorem 1 now follows from combining Proposition 3 with Proposition 17 in [1].

References

[1] Andreas Maurer. "A Bernstein-type inequality for functions of bounded interaction." arXiv preprint arXiv:1701.06191 (2017).
[2] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.

