Estimating Variance

Andreas Maurer

The purpose of this note is to give an upper bound on the variance of a bounded vector- or real valued random variable in terms of an iid sample. Let $X, X', X_1, ..., X_n$ be iid random variables with values in a ball B of diameter 1 in some Hilbert space (which could be \mathbb{R}). We write

$$V = \frac{1}{2} \mathbb{E} \|X - X'\|^2 \text{ and } \hat{V} = \frac{1}{2n(n-1)} \sum_{i,j} \|X_i - X_j\|^2.$$

Theorem 1
$$\Pr\left\{V - \hat{V} > t\right\} \le \exp\left(-nt^2/4V\right)$$
.

The proof relies on the following concentration inequality (Theorem 13, 2nd conclusion in [4], similar results from [2] or [3] could also be used):

Theorem 2 Let $\mathbf{X} = (X_1, ..., X_n)$ be a vector of independent random variables with values in some set Ω . For $1 \leq k \leq n$ and $y \in \Omega$, we use $\mathbf{X}_{y,k}$ to denote the vector obtained from \mathbf{X} by replacing X_k by y. Suppose that a > 1 and that $Z = Z(\mathbf{X})$ satisfies the inequalities

$$Z(\mathbf{X}) - \inf_{y \in \Omega} Z(\mathbf{X}_{y,k}) \le 1, \forall k$$
 (1)

$$\sum_{k=1}^{n} \left(Z\left(\mathbf{X}\right) - \inf_{y \in \Omega} Z\left(\mathbf{X}_{y,k}\right) \right)^{2} \leq aZ\left(\mathbf{X}\right)$$
 (2)

almost surely. Then, for t > 0,

$$\Pr\left\{\mathbb{E}Z - Z > t\right\} \le \exp\left(\frac{-t^2}{2a\mathbb{E}Z}\right).$$

Proof of Theorem 1. Write $Z = n\hat{V}$. Fix some k and choose any $y \in B$. Then

$$Z(\mathbf{X}) - Z(\mathbf{X}_{y,k}) = \frac{1}{n-1} \sum_{i} \left(\|X_k - X_j\|^2 - \|y - X_j\|^2 \right) \le \frac{1}{n-1} \sum_{i} \|X_k - X_j\|^2.$$

It follows that $Z(\mathbf{X}) - \inf_{y \in \Omega} Z(\mathbf{X}_{y,k}) \leq 1$. We also get

$$\sum_{k} \left(Z\left(\mathbf{X}\right) - \inf_{y \in \Omega} Z\left(\mathbf{X}_{y,k}\right) \right)^{2} \leq \sum_{k} \left(\frac{1}{n-1} \sum_{j} \left\| X_{k} - X_{j} \right\|^{2} \right)^{2}$$

$$\leq \frac{1}{n-1} \sum_{k} \sum_{j} \left\| X_{k} - X_{j} \right\|^{2} = 2Z\left(\mathbf{X}\right),$$

so that Z satisfies (1) and (2) with a=2. Since $\mathbb{E}Z=n\mathbb{E}\hat{V}=nV$, Theorem 2 gives the conclusion. \blacksquare

In the real valued case the exponent can be improved. This also furnishes an opportunity to show the advantages of Theorem 2 over the results in [2] and [3]. We need a technical lemma.

Lemma 3 Let X, Y be iid random variables with values in an interval [a, a + 1]. Then

$$\mathbb{E}_{X} \left[\mathbb{E}_{Y} \left(X - Y \right)^{2} \right]^{2} \leq (1/2) \mathbb{E} \left(X - Y \right)^{2}.$$

Proof. The right side above is of course the variance $\mathbb{E}\left[X^2 - XY\right]$. One computes

$$\mathbb{E}_{X} \left[\mathbb{E}_{Y} \left(X - Y \right)^{2} \right]^{2} = \mathbb{E} \left(X^{2} - 2X \mathbb{E} \left(Y \right) + \mathbb{E} \left(Y^{2} \right) \right)^{2}$$

$$= \mathbb{E} \left(X^{4} \right) + 3 \mathbb{E} \left(X^{2} \right)^{2} - 4 \mathbb{E} \left(X^{3} \right) \mathbb{E} \left(X \right)$$

$$= \mathbb{E} \left[X^{4} + 3X^{2}Y^{2} - 4X^{3}Y \right]$$

We therefore have to show that $\mathbb{E}\left[g\left(X,Y\right)\right] \geq 0$ where

$$g(X,Y) = X^2 - XY - X^4 - 3X^2Y^2 + 4X^3Y$$

A rather tedious computation gives

$$g(X,Y) + g(Y,X) = X^{2} - XY - X^{4} - 3X^{2}Y^{2} + 4X^{3}Y + Y^{2} - XY - Y^{4} - 3X^{2}Y^{2} + 4Y^{3}X$$
$$= (X - Y + 1)(Y - X + 1)(Y - X)^{2}.$$

The latter expression is clearly nonnegative, so

$$2\left[\mathbb{E}g\left(X,Y\right)\right]=\mathbb{E}\left[g\left(X,Y\right)+g\left(Y,X\right)\right]\geq0,$$

which completes the proof.

Theorem 4 If
$$B = [0, 1]$$
 then $\Pr\{V - \hat{V} > t\} \le \exp(-(n-1)t^2/2V)$.

Proof. We apply Lemma 3 to the empirical measure uniform on $(X_1, ..., X_n)$, multiply with n^3 and divide by $(n-1)^2$ to obtain obtain

$$\sum_{k} \left(\frac{1}{n-1} \sum_{j} (X_k - X_j)^2 \right)^2 \le \frac{n}{2(n-1)^2} \sum_{k,j} (X_k - X_j)^2 = \frac{n}{n-1} \hat{V}.$$

The conditions of Theorem 1 are therefore satisfied with $a=n/\left(n-1\right)$. Proceed as above. \blacksquare

Corollary 5 (i) For $\delta > 0$ we have with probability at least δ that

$$V \le \hat{V} + \sqrt{\frac{4\hat{V}\ln 1/\delta}{n} + \frac{4\ln 1/\delta}{n}}.$$

(ii) If B = [0, 1] we have with probability at least δ that

$$V \le \hat{V} + \sqrt{\frac{2\hat{V}\ln 1/\delta}{n-1} + \frac{2\ln 1/\delta}{n-1}}.$$

(iii) If B = [0,1] and $\hat{X} = (1/n) \sum X_i$ then, for $\delta > 0$, we have with probability at least δ that

$$\mathbb{E}X \le \hat{X} + \sqrt{\frac{2\hat{V}\ln 2/\delta}{n}} + \frac{7\ln 2/\delta}{3(n-1)}.$$

Proof. Equating the right side of the bound in Theorem 1 to δ and solving for t gives, with probability at least δ ,

$$\begin{array}{rcl} V & \leq & \hat{V} + \sqrt{\frac{4V \ln 1/\delta}{n}} \implies \\ \\ \sqrt{V} & \leq & \sqrt{\hat{V} + \frac{\ln 1/\delta}{n}} + \sqrt{\frac{\ln 1/\delta}{n}}. \end{array}$$

Squaring and the estimate $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ then give conclusion (i). For (ii) we use Theorem 4 in an analogous way to obtain

$$\sqrt{V} \le \sqrt{\hat{V} + \frac{\ln 1/\delta}{2(n-1)}} + \sqrt{\frac{\ln 1/\delta}{2(n-1)}} \tag{3}$$

and the conclusion. Finally recall that Bernstein's inequality [5] implies

$$\mathbb{E}X \le \hat{X} + \sqrt{V}\sqrt{\frac{2\ln 1/\delta}{n}} + \frac{\ln 1/\delta}{3n},$$

so that the last conclusion follows from combining this with (3) in a union bound and some simple estimates. \blacksquare

Part (iii) above is a version of an *empirical Bernstein bound* (see Audibert et al [1]). In [1] the result is obtained in a triple application of Bernsteins inequality, resulting in a slightly larger constant in the last term.

References

[1] J. Y. Audibert, R. Munos, C. Szepesvári. Exploration-exploitation trade-off using variance estimates in multi-armed bandits, Preprint.

- [2] S. Boucheron, G. Lugosi, P. Massart, A sharp concentration inequality with applications in random combinatorics and learning, Random Structures and Algorithms, (2000) 16:277-292.
- [3] S. Boucheron, G. Lugosi, P. Massart, Concentration inequalities using the entropy method, Annals of Probability (2003) 31:1583-1614.
- [4] Maurer, A. (2006). Concentration inequalities for functions of independent variables. *Random Structures Algorithms* 29 121–138.
- [5] C. McDiarmid, Concentration, in Probabilistic Methods of Algorithmic Discrete Mathematics, (1998) 195-248. Springer, Berlin