
Estimating Variance
Andreas Maurer

The purpose of this note is to give an upper bound on the variance of a
bounded vector- or real valued random variable in terms of an iid sample. Let
X;X 0; X1; :::; Xn be iid random variables with values in a ball B of diameter 1
in some Hilbert space (which could be R). We write

V =
1

2
E kX �X 0k2 and V̂ = 1

2n (n� 1)
X
i;j

kXi �Xjk2 :

Theorem 1 Pr
n
V � V̂ > t

o
� exp

�
�nt2=4V

�
.

The proof relies on the following concentration inequality (Theorem 13, 2nd
conclusion in [4], similar results from [2] or [3] could also be used):

Theorem 2 Let X = (X1; :::; Xn) be a vector of independent random variables
with values in some set 
. For 1 � k � n and y 2 
, we use Xy;k to denote
the vector obtained from X by replacing Xk by y. Suppose that a > 1 and that
Z = Z (X) satis�es the inequalities

Z (X)� inf
y2


Z (Xy;k) � 1;8k (1)

nX
k=1

�
Z (X)� inf

y2

Z (Xy;k)

�2
� aZ (X) (2)

almost surely. Then, for t > 0,

Pr fEZ � Z > tg � exp
�
�t2
2aEZ

�
:

Proof of Theorem 1. Write Z = nV̂ . Fix some k and choose any y 2 B.
Then

Z (X)�Z (Xy;k) =
1

n� 1
X
j

�
kXk �Xjk2 � ky �Xjk2

�
� 1

n� 1
X
j

kXk �Xjk2 :

It follows that Z (X)� infy2
 Z (Xy;k) � 1. We also get

X
k

�
Z (X)� inf

y2

Z (Xy;k)

�2
�

X
k

0@ 1

n� 1
X
j

kXk �Xjk2
1A2

� 1

n� 1
X
k

X
j

kXk �Xjk2 = 2Z (X) ;
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so that Z satis�es (1) and (2) with a = 2. Since EZ = nEV̂ = nV , Theorem 2
gives the conclusion.
In the real valued case the exponent can be improved. This also furnishes

an opportunity to show the advantages of Theorem 2 over the results in [2] and
[3]. We need a technical lemma.

Lemma 3 Let X, Y be iid random variables with values in an interval [a; a+ 1].
Then

EX
h
EY (X � Y )2

i2
� (1=2)E (X � Y )2 :

Proof. The right side above is of course the variance E
�
X2 �XY

�
. One

computes

EX
h
EY (X � Y )2

i2
= E

�
X2 � 2XE (Y ) + E

�
Y 2
��2

= E
�
X4
�
+ 3E

�
X2
�2 � 4E �X3

�
E (X)

= E
�
X4 + 3X2Y 2 � 4X3Y

�
We therefore have to show that E [g (X;Y )] � 0 where

g (X;Y ) = X2 �XY �X4 � 3X2Y 2 + 4X3Y

A rather tedious computation gives

g (X;Y ) + g (Y;X) = X2 �XY �X4 � 3X2Y 2 + 4X3Y

+Y 2 �XY � Y 4 � 3X2Y 2 + 4Y 3X

= (X � Y + 1) (Y �X + 1) (Y �X)2 :

The latter expression is clearly nonnegative, so

2 [Eg (X;Y )] = E [g (X;Y ) + g (Y;X)] � 0;

which completes the proof.

Theorem 4 If B = [0; 1] then Pr
n
V � V̂ > t

o
� exp

�
� (n� 1) t2=2V

�
.

Proof. We apply Lemma 3 to the empirical measure uniform on (X1; :::; Xn),
multiply with n3 and divide by (n� 1)2 to obtain obtain

X
k

0@ 1

n� 1
X
j

(Xk �Xj)2
1A2

� n

2 (n� 1)2
X
kj

(Xk �Xj)2 =
n

n� 1 V̂ :

The conditions of Theorem 1 are therefore satis�ed with a = n= (n� 1). Proceed
as above.
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Corollary 5 (i) For � > 0 we have with probability at least � that

V � V̂ +

s
4V̂ ln 1=�

n
+
4 ln 1=�

n
:

(ii) If B = [0; 1] we have with probability at least � that

V � V̂ +

s
2V̂ ln 1=�

n� 1 +
2 ln 1=�

n� 1 :

(iii) If B = [0; 1] and X̂ = (1=n)
P
Xi then, for � > 0, we have with

probability at least � that

EX � X̂ +

s
2V̂ ln 2=�

n
+
7 ln 2=�

3 (n� 1) :

Proof. Equating the right side of the bound in Theorem 1 to � and solving for
t gives, with probability at least �,

V � V̂ +

r
4V ln 1=�

n
=)

p
V �

r
V̂ +

ln 1=�

n
+

r
ln 1=�

n
:

Squaring and the estimate
p
a+ b �

p
a+

p
b then give conclusion (i). For (ii)

we use Theorem 4 in an analogous way to obtain

p
V �

s
V̂ +

ln 1=�

2 (n� 1) +

s
ln 1=�

2 (n� 1) (3)

and the conclusion. Finally recall that Bernstein�s inequality [5] implies

EX � X̂ +
p
V

r
2 ln 1=�

n
+
ln 1=�

3n
;

so that the last conclusion follows from combining this with (3) in a union bound
and some simple estimates.
Part (iii) above is a version of an empirical Bernstein bound (see Audibert

et al [1]). In [1] the result is obtained in a triple application of Bernsteins
inequality, resulting in a slightly larger constant in the last term.
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