Estimating Variance
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The purpose of this note is to give an upper bound on the variance of a
bounded vector- or real valued random variable in terms of an iid sample. Let
X, X', Xq,..., X, be iid random variables with values in a ball B of diameter 1
in some Hilbert space (which could be R). We write
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Theorem 1 Pr {V —V> t} < exp (—nt2/4V).

The proof relies on the following concentration inequality (Theorem 13, 2nd
conclusion in [4], similar results from [2] or [3] could also be used):

Theorem 2 Let X = (X4, ..., X,) be a vector of independent random variables
with values in some set Q. For 1 <k < n and y € €, we use Xy to denote
the vector obtained from X by replacing Xy by y. Suppose that a > 1 and that
Z = Z (X) satisfies the inequalities
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almost surely. Then, fort >0,
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Proof of Theorem 1. Write Z = nV. Fix some k and choose any y € B.
Then
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It follows that Z (X) —infyco Z (Xyx) < 1. We also get
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so that Z satisfies (1) and (2) with a = 2. Since BZ = nEV = nV, Theorem 2
gives the conclusion. m

In the real valued case the exponent can be improved. This also furnishes
an opportunity to show the advantages of Theorem 2 over the results in [2] and
[3]. We need a technical lemma.

Lemma 3 Let X, Y be iid random variables with values in an interval [a, a + 1].
Then

Bx [By (X v <(1/2BX - ).

Proof. The right side above is of course the variance E [X X Y]. One
computes

Ex [By (Xfyﬂ2 = E(X?-2XE(Y)+E(v?))?
1) 4+ 3E (X?)* — 4B (X?) B (X)

E
= E(X
E[X*+3X°Y? - 4X7Y]

We therefore have to show that E[g (X,Y)] > 0 where
g(X,Y)=X? - XY - X* - 3X2Y? 4 4X3Y
A rather tedious computation gives

g(X,Y)+g(V,X) = X?-XY - X*-3X2%Y? +4X3Y
+Y2 - XY - Y* - 3X%Y? +4Y3X
= (X-Y+) (Y -X+1) (¥ -X).

The latter expression is clearly nonnegative, so
2[Bg (X,Y)] =E[g(X,Y) +¢ (Y, X)] >0,
which completes the proof. m
Theorem 4 If B = [0,1] then Pr {V -V > t} <exp(—(n—1)t?/2V).

Proof. We apply Lemma 3 to the empirical measure uniform on (X7, ..., X,,),
multiply with n® and divide by (n — 1)* to obtain obtain
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The conditions of Theorem 1 are therefore satisfied with a = n/ (n — 1). Proceed
as above. m



Corollary 5 (i) For § > 0 we have with probability at least & that

V<V 4V1In1/é N 41n1/5'
V n n

(i) If B =10, 1] we have with probability at least § that

V<V /2V1n1/5+ 21n1/5'
n—1 n—1

(iii) If B = [0,1] and X = (1/n)S. X, then, for § > 0, we have with
probability at least & that

EX < X + 2V 1In2/$ n 7In2/6 .
n 3(n—1)

Proof. Equating the right side of the bound in Theorem 1 to § and solving for
t gives, with probability at least 9,

v o< T4 /4V121/5 .
- Inl In1
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Squaring and the estimate va + b < v/a + v/b then give conclusion (i). For (ii)
we use Theorem 4 in an analogous way to obtain

VV < \/V + 21(21/51) + \/21(1;1/51) (3)
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and the conclusion. Finally recall that Bernstein’s inequality [5] implies
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so that the last conclusion follows from combining this with (3) in a union bound
and some simple estimates. m

Part (iii) above is a version of an empirical Bernstein bound (see Audibert
et al [1]). In [1] the result is obtained in a triple application of Bernsteins
inequality, resulting in a slightly larger constant in the last term.
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