Estimating Variance

Andreas Maurer

The purpose of this note is to give an upper bound on the variance of a bounded vector- or real valued random variable in terms of an iid sample. Let $X, X^{\prime}, X_{1}, \ldots, X_{n}$ be iid random variables with values in a ball B of diameter 1 in some Hilbert space (which could be \mathbb{R}). We write

$$
V=\frac{1}{2} \mathbb{E}\left\|X-X^{\prime}\right\|^{2} \text { and } \hat{V}=\frac{1}{2 n(n-1)} \sum_{i, j}\left\|X_{i}-X_{j}\right\|^{2}
$$

Theorem $1 \operatorname{Pr}\{V-\hat{V}>t\} \leq \exp \left(-n t^{2} / 4 V\right)$.
The proof relies on the following concentration inequality (Theorem 13, 2nd conclusion in [4], similar results from [2] or [3] could also be used):

Theorem 2 Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a vector of independent random variables with values in some set Ω. For $1 \leq k \leq n$ and $y \in \Omega$, we use $\mathbf{X}_{y, k}$ to denote the vector obtained from \mathbf{X} by replacing X_{k} by y. Suppose that $a>1$ and that $Z=Z(\mathbf{X})$ satisfies the inequalities

$$
\begin{align*}
Z(\mathbf{X})-\inf _{y \in \Omega} Z\left(\mathbf{X}_{y, k}\right) & \leq 1, \forall k \tag{1}\\
\sum_{k=1}^{n}\left(Z(\mathbf{X})-\inf _{y \in \Omega} Z\left(\mathbf{X}_{y, k}\right)\right)^{2} & \leq a Z(\mathbf{X}) \tag{2}
\end{align*}
$$

almost surely. Then, for $t>0$,

$$
\operatorname{Pr}\{\mathbb{E} Z-Z>t\} \leq \exp \left(\frac{-t^{2}}{2 a \mathbb{E} Z}\right)
$$

Proof of Theorem 1. Write $Z=n \hat{V}$. Fix some k and choose any $y \in B$. Then
$Z(\mathbf{X})-Z\left(\mathbf{X}_{y, k}\right)=\frac{1}{n-1} \sum_{j}\left(\left\|X_{k}-X_{j}\right\|^{2}-\left\|y-X_{j}\right\|^{2}\right) \leq \frac{1}{n-1} \sum_{j}\left\|X_{k}-X_{j}\right\|^{2}$.
It follows that $Z(\mathbf{X})-\inf _{y \in \Omega} Z\left(\mathbf{X}_{y, k}\right) \leq 1$. We also get

$$
\begin{aligned}
\sum_{k}\left(Z(\mathbf{X})-\inf _{y \in \Omega} Z\left(\mathbf{X}_{y, k}\right)\right)^{2} & \leq \sum_{k}\left(\frac{1}{n-1} \sum_{j}\left\|X_{k}-X_{j}\right\|^{2}\right)^{2} \\
& \leq \frac{1}{n-1} \sum_{k} \sum_{j}\left\|X_{k}-X_{j}\right\|^{2}=2 Z(\mathbf{X})
\end{aligned}
$$

so that Z satisfies (1) and (2) with $a=2$. Since $\mathbb{E} Z=n \mathbb{E} \hat{V}=n V$, Theorem 2 gives the conclusion.

In the real valued case the exponent can be improved. This also furnishes an opportunity to show the advantages of Theorem 2 over the results in [2] and [3]. We need a technical lemma.

Lemma 3 Let X, Y be iid random variables with values in an interval $[a, a+1]$. Then

$$
\mathbb{E}_{X}\left[\mathbb{E}_{Y}(X-Y)^{2}\right]^{2} \leq(1 / 2) \mathbb{E}(X-Y)^{2}
$$

Proof. The right side above is of course the variance $\mathbb{E}\left[X^{2}-X Y\right]$. One computes

$$
\begin{aligned}
\mathbb{E}_{X}\left[\mathbb{E}_{Y}(X-Y)^{2}\right]^{2} & =\mathbb{E}\left(X^{2}-2 X \mathbb{E}(Y)+\mathbb{E}\left(Y^{2}\right)\right)^{2} \\
& =\mathbb{E}\left(X^{4}\right)+3 \mathbb{E}\left(X^{2}\right)^{2}-4 \mathbb{E}\left(X^{3}\right) \mathbb{E}(X) \\
& =\mathbb{E}\left[X^{4}+3 X^{2} Y^{2}-4 X^{3} Y\right]
\end{aligned}
$$

We therefore have to show that $\mathbb{E}[g(X, Y)] \geq 0$ where

$$
g(X, Y)=X^{2}-X Y-X^{4}-3 X^{2} Y^{2}+4 X^{3} Y
$$

A rather tedious computation gives

$$
\begin{aligned}
g(X, Y)+g(Y, X)= & X^{2}-X Y-X^{4}-3 X^{2} Y^{2}+4 X^{3} Y \\
& +Y^{2}-X Y-Y^{4}-3 X^{2} Y^{2}+4 Y^{3} X \\
= & (X-Y+1)(Y-X+1)(Y-X)^{2}
\end{aligned}
$$

The latter expression is clearly nonnegative, so

$$
2[\mathbb{E} g(X, Y)]=\mathbb{E}[g(X, Y)+g(Y, X)] \geq 0
$$

which completes the proof.
Theorem 4 If $B=[0,1]$ then $\operatorname{Pr}\{V-\hat{V}>t\} \leq \exp \left(-(n-1) t^{2} / 2 V\right)$.
Proof. We apply Lemma 3 to the empirical measure uniform on $\left(X_{1}, \ldots, X_{n}\right)$, multiply with n^{3} and divide by $(n-1)^{2}$ to obtain obtain

$$
\sum_{k}\left(\frac{1}{n-1} \sum_{j}\left(X_{k}-X_{j}\right)^{2}\right)^{2} \leq \frac{n}{2(n-1)^{2}} \sum_{k j}\left(X_{k}-X_{j}\right)^{2}=\frac{n}{n-1} \hat{V}
$$

The conditions of Theorem 1 are therefore satisfied with $a=n /(n-1)$. Proceed as above.

Corollary 5 (i) For $\delta>0$ we have with probability at least δ that

$$
V \leq \hat{V}+\sqrt{\frac{4 \hat{V} \ln 1 / \delta}{n}}+\frac{4 \ln 1 / \delta}{n}
$$

(ii) If $B=[0,1]$ we have with probability at least δ that

$$
V \leq \hat{V}+\sqrt{\frac{2 \hat{V} \ln 1 / \delta}{n-1}}+\frac{2 \ln 1 / \delta}{n-1}
$$

(iii) If $B=[0,1]$ and $\hat{X}=(1 / n) \sum X_{i}$ then, for $\delta>0$, we have with probability at least δ that

$$
\mathbb{E} X \leq \hat{X}+\sqrt{\frac{2 \hat{V} \ln 2 / \delta}{n}}+\frac{7 \ln 2 / \delta}{3(n-1)}
$$

Proof. Equating the right side of the bound in Theorem 1 to δ and solving for t gives, with probability at least δ,

$$
\begin{aligned}
V & \leq \hat{V}+\sqrt{\frac{4 V \ln 1 / \delta}{n}} \Longrightarrow \\
\sqrt{V} & \leq \sqrt{\hat{V}+\frac{\ln 1 / \delta}{n}}+\sqrt{\frac{\ln 1 / \delta}{n}}
\end{aligned}
$$

Squaring and the estimate $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$ then give conclusion (i). For (ii) we use Theorem 4 in an analogous way to obtain

$$
\begin{equation*}
\sqrt{V} \leq \sqrt{\hat{V}+\frac{\ln 1 / \delta}{2(n-1)}}+\sqrt{\frac{\ln 1 / \delta}{2(n-1)}} \tag{3}
\end{equation*}
$$

and the conclusion. Finally recall that Bernstein's inequality [5] implies

$$
\mathbb{E} X \leq \hat{X}+\sqrt{V} \sqrt{\frac{2 \ln 1 / \delta}{n}}+\frac{\ln 1 / \delta}{3 n}
$$

so that the last conclusion follows from combining this with (3) in a union bound and some simple estimates.

Part (iii) above is a version of an empirical Bernstein bound (see Audibert et al [1]). In [1] the result is obtained in a triple application of Bernsteins inequality, resulting in a slightly larger constant in the last term.

References

[1] J. Y. Audibert, R. Munos, C. Szepesvári. Exploration-exploitation trade-off using variance estimates in multi-armed bandits, Preprint.
[2] S. Boucheron, G. Lugosi, P. Massart, A sharp concentration inequality with applications in random combinatorics and learning, Random Structures and Algorithms, (2000) 16:277-292.
[3] S. Boucheron, G. Lugosi, P. Massart, Concentration inequalities using the entropy method, Annals of Probability (2003) 31:1583-1614.
[4] Maurer, A. (2006). Concentration inequalities for functions of independent variables. Random Structures Algorithms 29 121-138.
[5] C. McDiarmid, Concentration, in Probabilistic Methods of Algorithmic Discrete Mathematics, (1998) 195-248. Springer, Berlin

