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1 Introduction

Let H be a real, separable, infinite dimensional Hilbert space. We will only need
finite dimensional subspaces of H, but infinite dimensionality frees us of some
notational complications, because every finite dimensional Hilbert space can be
isometrically embedded in H. An n-tuple of points x = (x1, ..., xn) ∈ Hn will
be called a configuration. The integer n will be fixed in all the following.
With γ we denote the unique centered H-valued Gaussian random variable

whose covariance is the identity operator. If (ek) is an orthonormal basis of H
and (γk) is an infinite sequence of independent standard normal variables we
can write γ =

∑
γkek.

We define a function Γ : Hn → R on configurations by

Γ (x) = E n
max
i=1
〈xi, γ〉 .

Slepian’s lemma states that Γ has the following monotonicity property:

Theorem 1 If two configurations x and y satisfy ‖xi − xj‖ ≤ ‖yi − yj‖ for all
1 ≤ i < j ≤ m, then Γ (x) ≤ Γ (y).

Let Xi and X ′i be centered Gaussian random variables. Construction of
two configurations x and y ∈ Hm such that 〈xi, xj〉 = E [XiXj ] and 〈yi, yj〉 =
E [YiYj ] gives the following, perhaps more familiar version:

If E
[
(Xi −Xj)

2
]
≤ E

[
(Yi − Yj)2

]
for all i < j then Emaxmi=1Xi ≤ Emaxmi=1 Yi.

In the literature there are proofs ([3],[2],[4],[6]) where the hypotheses are
augmented by the condition that the variances of the Xi and the Yi be equal.
From this weaker result the weaker conclusion Emaxmi=1Xi ≤ 2Emaxmi=1 Yi is
then derived. Theorem 1 immediately implies these weaker versions, but, despite
frequent citations, proofs are diffi cult to find, which is one of the motivations
for these pages.
Another motivation is to state the Theorem in somewhat greater generality,

combining the classical work of Lorenz [5] and Fernique. A function f : Rn → R
is called L-subadditive if

∀x,y ∈ Rn : f (x) + f (y) ≥ f (x ∧ y) + f (x ∨ y) ,
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where ∧ and ∨ denote the coordinatewise minimum and maximum respectively.
Then we have

Theorem 2 Suppose that f : Rn → R is a tempered distribution, L-subadditive
and satistfies

f (r1 + t, ..., rn + t) = f (r1, ..., rn) + h (t) ,

where h (−t) = −h (t). Then for any two configurations x and y satisfying
‖xi − xj‖ ≤ ‖yi − yj‖ for all 1 ≤ i < j ≤ m we have

Ef (〈x1, γ〉 , ..., 〈xn, γ〉) ≤ Ef (〈y1, γ〉 , ..., 〈yn, γ〉) .

It turns out that the max-function is L-subadditive, so Theorem 1 follows
from Theorem 2. Also the function diam(x1, ..., xm) = maxi,j (xi − xj) turns
out to be L-subadditive, which leads to Ferniques result (Theorem 3.15 in [4]):

Theorem 3 If two configurations x and y satisfy ‖xi − xj‖ ≤ ‖yi − yj‖ for all
1 ≤ i < j ≤ m, then

Emax
i,j
〈xi − xj , γ〉 ≤ Emax

i,j
〈yi − yj , γ〉 .

The proof of Theorem 2 is hinged on two independent results. The first one
is that an analogous result holds if the function f is twice differentiable and has
non-positive mixed partial derivatives. I will establish this in the next section.
The second result is the observation that the twice differentiable L-subadditive
functions are characterized by exactly this property of having non-positive mixed
partial derivatives. Combining the two results with a limiting argument leads
to Theorem 2.
Slepian’s inequality has important applications in the theory of empirical

processes, such as the Sudakov minoration property (see e.g. [4]). More re-
cently there have been applications in statistical learning theory, where it easily
yields dimension-free uniform bounds for rather complicated function classes.
Examples are the function classes of decision trees or neural networks [1],for
k-means clustering, and various related techniques[7] and certain classes of op-
erators involved in transfer learning [8]. The proof of Slepian’s inequality is
not particularly diffi cult, but it involves probability theory, linear algebra and
analysis, and it is mathematically interesting.

2 Geometry

H and Hn have already been introduced. With Hn
0 we denote the set of all con-

figurations x = (x1, ..., xn) ∈ Hn such that no xi is in the hyperplane generated
by the other xj , so that the xi form the vertices of a nondegenerate n-simplex.
A function F : Hn → R is called isometrically invariant if it is invariant

under translations and under unitary treansformations, that is

F (x1 + y, ..., xn + y) = F (x1, ..., xn) = F (Ux1, ..., Uxn)

2



for all y ∈ H and unitary U ∈ L (H).
For a configuration x ∈ Hn let the vector D (x) ∈ Rn(n−1)/2 be defined by

D (x)ij = ‖xi − xj‖2 for 1 ≤ i < j ≤ n.

In the following we denote ∆ = D (Hn) and ∆0 = D (Hn
0 ). If a ∈ ∆ and

a = D (x), then the configuration x is called a realization of a. A function
g : ∆ → R is called nondecreasing if g (a) ≤ g (b) whenever aij ≤ bij for all
1 ≤ i < j ≤ n.

Lemma 4 ∆ and ∆0 are convex, ∆0 is open and ∆ is the closure of ∆0.
Suppose that F : Hn → R is isometrically invariant. Then there exists

g : ∆→ R such that
F = g ◦D.

Furthermore, if F is continuous then g is continuous, and if F is differentiable
then g is differentiable in ∆0.

Proof. Let a ∈ Rn(n−1)/2 and define a symmetric (n− 1) × (n− 1)-matrix
G (a) by G (a)ij = (āni + ānj − āij) /2, where ā denotes the extension of a to a
symmetric matrix vanishing on the diagonal. If a ∈ ∆ and x is any realization
of a denote with x0 the realization x0 = (x1 − xn, ..., xn−1 − xn, 0). Then for
i, j ∈ {1, ..., n− 1} we have

G (a)ij = 〈xi − xn, xj − xn〉 ,

so G (a) is the gramian of the first n − 1 vectors is x0. It follows that G (a) is
positive semidefinite if a ∈ ∆ and positive definite if a ∈ ∆0. Since a 7→ G (a)
is continuous ∆0 is open. Let (ek) be a standard orthonormal basis of H and
G1/2 (a) the positive semidefinite square-root of G (a). We define xs (a) by

xs (a) =

(
n−1∑
i=1

G1/2 (a)1i ei, ...,

n−1∑
i=1

G1/2 (a)(n−1)i ei, 0

)
.

It is easily checked that xs (a) is a realization of a, which we call the standard
realization. Observe that a 7→ G (a) is differentiable and that G (a) 7→ G1/2 (a)
is continuous and also differentiable if G (a) is positive definite. It follows that
a 7→ xs (a) is continuous and for a ∈ ∆0 also differentiable. If λ ∈ [0, 1] and
a1, a2 ∈ ∆, then G ((1− λ) a1 + λa2) = (1− λ)G (a1) + λG (a2) is positive
definite, so by the above construction (1− λ) a1+λa2 ∈ ∆, so that ∆ is convex.
It follows similarly that ∆0 is convex. Define

g (a) = F (xs (a)) , for a ∈ ∆,

which gives the required continuity and differentiability properties of g and also
shows that ∆ is the closure of ∆0. It remains to verify that F = g ◦ D, that
is F (x) = F (xs (a)) for any realization x of a. Clearly translation by xn is an
isometry, so F (x) = F (x0). Let (fk) be any orthonormal basis of H and A an
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(n− 1)×(n− 1)-matrix such that xi−xn =
∑n−1
j=1 Aijfj . Then A = UG1/2 (a)

for orthogonal U , by polar decomposition, so
∑
j βjfj 7→

∑
jk Ujkβjek is an

isometry taking x0 to xs (a), whence F (x) = F (x0) = F (xs (a)).

For a function f : Rn → R, f ∈ C2, we denote with ∂kf and ∂ikf the second
partial derivative w.r.t. the k-th and i-th variables.

Theorem 5 If f : Rn → R, f ∈ C2, (∂ikf) ≤ 0 for i 6= k and

f (r1 + t, ..., rn + t) = f (r1, ..., rn) + g (t) ,

where g (−t) = −g (t) , then the configuration functional

Φf (x) = Ef (〈x1, γ〉 , ..., 〈xn, γ〉) for x ∈ Hn

is isometrically invariant and satisfies

Φf (x) ≤ Φf (y) if ‖xi − xj‖2 ≤ ‖yi − yj‖2 for all 1 ≤ i, j ≤ n.

nondecreasing.

Proof. Orthogonal invariance of Φ is an obvious consequence of the orthog-
onal invariance of the gaussian expectation, and translation invariance follows
because g is odd and the expectation is invariant under the transformation
γ 7→ −γ. This gives isometric invariance.
Differentiability of f implies that Φf is differentiable. By isometric invari-

ance and the previous lemma there must be a continuous function g on ∆,
differentiable on ∆0, such that g ◦D = Φf . We need to show that g is nonde-
creasing. Since g is continuous and ∆ is the closure of ∆0 it is enough to verify
this on ∆0 and, since g is differentiable on the convex set ∆0 it suffi ces to show
that all partial derivatives of g are non-negative.
Fix a ∈ ∆0 and indices 1 ≤ k < l ≤ n. Let a = D (x) = D (x1, ..., xn), where

we can assume xk = 0 by translation invariance. Since a ∈ ∆0, the xi are linearly
independent for i 6= l and we can write xl = z − y, where z ∈ Span {xi : i 6= l},
and y ⊥ Span {xi : i 6= l} and ‖y‖ > 0. Define a curve γ : R→ Hn by

γ (t) = (x1 (t) , ..., xn (t)) = (x1, ..., xk−1, ty, xk+1, ..., xn) .

so only the k-th component is made time-dependent and set to ty. Defining
η : R→ ∆ by η (t) = D (γ (t)) we find for 1 ≤ i < j ≤ n that

η̇ij (0) =

(
d

dt

)
t=0

‖xi (t)− xj (t)‖2 =

{
2 ‖y‖2 if i = k and j = l

0 otherwise
.

We therefore have

2 ‖y‖2 ∂g

∂e(kl)
(a) =

∑
i<j

∂g

∂e(ij)
η̇ij (0) =

d

dt
g (η (t)) (0) =

d

dt
Φf (γ (t)) (0) , (1)
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where e(kl) denotes the basis vector of Rn(n−1)/2 given by e(kl)ij = 1 if i = k and
j = l and zero else.
We now write any γ ∈ H as γ = γ0 + γ⊥ where γ0 = 〈y, γ〉 y/ ‖y‖2 and γ⊥

is orthogonal to y. Using the shorthand (x, γ) = (〈x1, γ〉 , ..., 0, ... 〈xm, γ〉) we
define a function hγ (t) = (∂kf)

(
x, γ⊥ + tγ0

)
. Observe that 〈xi, y〉 = 0 for i 6= l

and 〈xl, y〉 = −‖y‖2 ≤ 0. Then

h′γ (t) 〈y, γ0〉 =
∑
i 6=k

(∂ikf)
(
x, γ⊥ + tγ0

)
〈xi, γ0〉 〈y, γ0〉

= (∂lkf)
(
x, γ⊥ + tγ0

)
〈xl, γ0〉 〈y, γ0〉

= − (∂lkf)
(
x, γ⊥ + tγ0

)
〈y, γ〉2 ≥ 0,

where we used the hypothesis on the mixed partials in the last step.
For γ ∈ H denote γ̂ = −γ0 + γ⊥, corresponding to a reflection on the

hyperplane orthogonal to y. The expectation Eγ is invariant under the reflection
γ → γ̂. So by (1) and h′γ (t) 〈y, γ0〉 ≥ 0

2 ‖y‖2 ∂g

∂e(kl)
(a) =

d

dt
Φf (x1, .., ty, ..., xm) (0)

= E 〈y, γ〉 (∂kf) (x, γ)

=
1

2
(E 〈y, γ〉 (∂kf) (x, γ) + E 〈y, γ̂〉 (∂kf) (x, γ̂))

=
1

2

(
E 〈y, γ0〉 (∂kf)

(
x, γ⊥ + γ0

)
− E 〈y, γ0〉 (∂kf)

(
x, γ⊥ − γ0

))
=

1

2
E 〈y, γ0〉 (hγ (1)− hγ (−1))

=
1

2
E
∫ 1

−1
h′γ (t) 〈y, γ0〉 dt ≥ 0.

So ∂g/∂e(kl) is nonnegative in ∆0 which implies the required monotonicity of g
on the convex set ∆0. Continuity of g extends this property to all of ∆.

Clearly the monotonicity property extends to more general functions which
are the pointwise limits of C2-functions with non-positive mixed partial deriv-
atives. In the next section we characterize this class of functions.

3 L-subadditive functions

This concept, together with the symmetrically defined L-superadditive func-
tions) was introduced by Lorentz [5] in 1953. For two real numbers s and t we
use s ∧ t and s ∨ t to denote respectively their minimum and maximum.

Definition 6 For ∀x,y ∈ Rm the minimum x ∧ y ∈ Rm and the maximum
x ∨ y ∈ Rm are defined by

(x ∧ y) = (x1 ∧ y1, ..., xm ∧ ym)

(x ∨ y) = (x1 ∨ y1, ..., xm ∨ ym) .
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Note the translation invariance properties

(x+ z) ∧ (y + z) = (x ∧ y) + z

(x+ z) ∨ (y + z) = (x ∨ y) + z.

Definition 7 A function f : Rm → R is called L-subadditive if

∀x,y ∈ Rm : f (x) + f (y) ≥ f (x ∧ y) + f (x ∨ y) .

Lemma 8 Every locally integrable L-subadditive function f : Rm → R is the
pointwise limit of infinitely differentiable L-subadditive functions fn. If f is
continuous the convergence is uniform on compact subsets of Rm. If f has the
property that

f (r1 + t, ..., rn + t) = f (r1, ..., rn) + g (t) ,

where g (−t) = −g (t), then fn can be chosen to have the same property with
some appropriate gn.

Proof. Choose a suitable sequence of nonnegative test functions hn such that
such that fn = f ∗ hn → f pointwise (or uniformly on compact subsets if f is
continuous). Since f ∗ hn is C∞ it suffi ces to show that f ∗ h is L-subadditive
for every positive measurable g ∈ L1. But

f ∗ h (x) + f ∗ h (y) =

∫
Rm

(f (x− z) + f (y − z))h (z) dz

≥
∫
Rm

(f (x ∨ y − z) + f (x ∧ y − z))h (z) dz

= f ∗ ghx ∧ y + f ∗ h (x ∨ y) .

This proves the first part. For the second it is easily verified that

fn (r1 + t, ..., rn + t) = fn (r1, ..., rn) + g (t)

(∫
Rm

hn (z) dz

)
.

Below I denote ∂i for ∂/∂ri and ∂ij for ∂2/∂ri∂rj , where the partial deriva-
tives are understood in the sense of distributions. The L-subadditive functions
are completely characterized by the sign of mixed second partial derivatives:

Theorem 9 If f : Rm → R is locally integrable then f is L-subadditive if and
only if ∂klf ≤ 0, in the sense of distributions, for all k 6= l.

Proof. Suppose first that f ∈ C2. Suppose that f is L-subadditive and let
x ∈ Rm, k, l ∈ {1, ...,m}. Since f ∈ C2 we have (suppressing the dependence of
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f on other coordinates than xk and rl)

(∂klf) (x)

= lim
0<s,t→0

(st)
−1

(f (xk + s, xl + t)− f (xk, xl + t)− (f (xk + s, xl)− f (xk, xl)))

= lim
0<s,t→0

(st)
−1

(f (xk + s ∨ xk, xl ∨ xl + t) + f (xk + s ∧ xk, xl ∧ xl + t)

− (f (xk, xl + t) + f (xk + s, xl)))

≤ 0,

which proves the only-if part.
Suppose now that ∂klf ≤ 0 for all k 6= l and let x and y ∈ Rm. Define

curves ξ and η : [0, 1]→ Rm by

ξ (t) = (1− t)x+ t (x ∧ y)

η (t) = (1− t) (x ∨ y) + ty.

Let I ⊆ {1, ...,m} be the set of indices such that xi > yi. Observe that for i ∈ I
we have

ξi (t) = ηi (t) = (1− t)xi + tyi,

while for i /∈ I we have ξi (t) = xi and ηi (t) = yi for all t. Now define a
real function h by h (t) = f (ξ (t)) − f (η (t)). To show that f is L-subadditive
it suffi ces to show that h (1) ≤ h (0), which will follow if we can show that
h′ (t) ≤ 0. Fix any t. We have

h′ (t) =
∑
i∈I

[∂if (η (t))− ∂if (ξ (t))] (xi − yi) .

To show that this is negative we define a curve χ : [0, 1] → Rm by χ (s) =
(1− s) ξ (t) + sη (t). Observe that

χi (s) =

{
(1− t)xi + tyi if i ∈ I
(1− s)xi + syi if i /∈ I .

We therefore obtain

h′ (t) =
∑
i∈I

[∂if (χ (1))− ∂if (χ (0))] (xi − yi)

=
∑
i∈I

∫ 1

0

d

ds
∂if (χ (s)) ds (xi − yi)

=

∫ 1

0

∑
i∈I

∑
j /∈I

∂ijf (χ (s)) (yj − xj) (xi − yi) ds

≤ 0.

The inequality holds because (yj − xj) (xi − yi) ≥ 0 for i ∈ I and j /∈ I.
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We have shown that the announced result holds for f ∈ C2. Now let k 6= l
and let f be locally integrable and hn and fn as in Lemma 8. Since

∂klfn = ∂kl (f ∗ hn) = (∂klf) ∗ hn

we have (∂klf) ≤ 0 =⇒ ∂klfn ≤ 0 =⇒ fn is L-subadditive. Since
L-subadditivity is preserved under pointwise limits this implies that f is L-
subadditive. Conversely, by the previous Lemma, if f is L-subadditive then so
is fn, whence ∂klfn ≤ 0 =⇒ ∂klf ≤ 0.

4 Putting it together

Proof of Theorem 2. By Lemma 8 we can find a sequence fn of L-subadditive
C∞-functions such that fn → f and

fn (r1 + t, ..., rn + t) = fn (r1, ..., rn) + hn (t) ,

where hn (−t) = −hn (t). By Theorem 9 we have ∂klfn ≤ 0 for all k 6= l, so
that fn satisfies the hypotheses of Theorem 5. Φfn has therefore the required
monotonicity property, which is preserved under the limit fn → f , because f
and fn are tempered distributions integrated against Gaussians.

Proof of Theorem 1. The maximum function (x1, ..., xm) 7→ max {x1, ..., xm}
is L-subadditive: Take x,y ∈ Rm, wlog assume max (x) ≥ max (y). Then
max (x ∨ y) ≤ max (x) and max (x ∧ y) ≤ max (y) and adding these inequali-
ties shows L-subadditivity. We also have

max {x1 + t, ..., xn + t} = max {x1, ..., xn}+ t,

so f = max satisfies the hypotheses of Theorem 2 with g (t) = t.

Proof of Theorem 3. Consider the function

diam (x1, ..., xm) = max
i,j

(xi − xj) .

Take x,y ∈ Rm and consider the quantity

Aijkl = xi ∨ yi − xj ∨ yj + xi ∧ yi − xj ∧ yj .

Assume first xi ≥ yi. Then if yl < xl =⇒ Aijkl ≤ xi−xj+yk−yl ≤diam(x) +diam(y),
and yl ≥ xl =⇒ Aijkl ≤ xi − xl + yk − yj ≤diam(x) +diam(y). Analogous
inequalities hold if xi < yi, so that in all cases Aijkl ≤diam(x) +diam(y). Max-
imizing over all pairs (i, j) and (k, l) shows that diam is L-subadditive. It is also
invariant under translations.
Now let ψ be as in the theorem. We find

∂kl (ψ (diam (x))) = ψ′′ (diam (x)) (∂kdiam) (x) (∂ldiam) (x)+ψ′ (diam (x)) (∂kldiam) (x) .
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The second term on the right is non-positive because ψ is nondecreasing and
by L-subadditivity of diam combined with by Theorem 9. By convexity of ψ
we get ψ′′ (diam (x)) ≥ 0. But the product (∂kdiam) (x) (∂ldiam) (x) is nonzero
only if either diam(x) = xk−xl or diam(x) = xl−xk. In both cases the prosuct
is negative, so ∂kl (ψ ◦ diam) ≤ 0. So ψ◦diam is L-subadditive and satisfies the
hypotheses of 2 with g (t) = 0.
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