A Proof of Slepian's Inequality

March 23, 2011

1 Introduction

Let H be a real, separable, infinite dimensional Hilbert space. We will only need finite dimensional subspaces of H, but infinite dimensionality frees us of some notational complications, because every finite dimensional Hilbert space can be isometrically embedded in H. An n-tuple of points $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in H^{n}$ will be called a configuration. The integer n will be fixed in all the following.

With γ we denote the unique centered H-valued Gaussian random variable whose covariance is the identity operator. If $\left(e_{k}\right)$ is an orthonormal basis of H and $\left(\gamma_{k}\right)$ is an infinite sequence of independent standard normal variables we can write $\gamma=\sum \gamma_{k} e_{k}$.

We define a function $\Gamma: H^{n} \rightarrow \mathbb{R}$ on configurations by

$$
\Gamma(\mathbf{x})=\mathbb{E} \max _{i=1}^{n}\left\langle x_{i}, \gamma\right\rangle .
$$

Slepian's lemma states that Γ has the following monotonicity property:
Theorem 1 If two configurations \mathbf{x} and \mathbf{y} satisfy $\left\|x_{i}-x_{j}\right\| \leq\left\|y_{i}-y_{j}\right\|$ for all $1 \leq i<j \leq m$, then $\Gamma(\mathbf{x}) \leq \Gamma(\mathbf{y})$.

Let X_{i} and X_{i}^{\prime} be centered Gaussian random variables. Construction of two configurations \mathbf{x} and $\mathbf{y} \in H^{m}$ such that $\left\langle x_{i}, x_{j}\right\rangle=\mathbb{E}\left[X_{i} X_{j}\right]$ and $\left\langle y_{i}, y_{j}\right\rangle=$ $\mathbb{E}\left[Y_{i} Y_{j}\right]$ gives the following, perhaps more familiar version:
If $\mathbb{E}\left[\left(X_{i}-X_{j}\right)^{2}\right] \leq \mathbb{E}\left[\left(Y_{i}-Y_{j}\right)^{2}\right]$ for all $i<j$ then $\mathbb{E} \max _{i=1}^{m} X_{i} \leq \mathbb{E} \max _{i=1}^{m} Y_{i}$.
In the literature there are proofs ([3],[2],[4],[6]) where the hypotheses are augmented by the condition that the variances of the X_{i} and the Y_{i} be equal. From this weaker result the weaker conclusion $\mathbb{E} \max _{i=1}^{m} X_{i} \leq 2 \mathbb{E} \max _{i=1}^{m} Y_{i}$ is then derived. Theorem 1 immediately implies these weaker versions, but, despite frequent citations, proofs are difficult to find, which is one of the motivations for these pages.

Another motivation is to state the Theorem in somewhat greater generality, combining the classical work of Lorenz [5] and Fernique. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called L-subadditive if

$$
\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}: f(\mathbf{x})+f(\mathbf{y}) \geq f(\mathbf{x} \wedge \mathbf{y})+f(\mathbf{x} \vee \mathbf{y})
$$

where \wedge and \vee denote the coordinatewise minimum and maximum respectively. Then we have

Theorem 2 Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a tempered distribution, L-subadditive and satistfies

$$
f\left(r_{1}+t, \ldots, r_{n}+t\right)=f\left(r_{1}, \ldots, r_{n}\right)+h(t),
$$

where $h(-t)=-h(t)$. Then for any two configurations \mathbf{x} and \mathbf{y} satisfying $\left\|x_{i}-x_{j}\right\| \leq\left\|y_{i}-y_{j}\right\|$ for all $1 \leq i<j \leq m$ we have

$$
\mathbb{E} f\left(\left\langle x_{1}, \gamma\right\rangle, \ldots,\left\langle x_{n}, \gamma\right\rangle\right) \leq \mathbb{E} f\left(\left\langle y_{1}, \gamma\right\rangle, \ldots,\left\langle y_{n}, \gamma\right\rangle\right)
$$

It turns out that the max-function is L-subadditive, so Theorem 1 follows from Theorem 2. Also the function $\operatorname{diam}\left(x_{1}, \ldots, x_{m}\right)=\max _{i, j}\left(x_{i}-x_{j}\right)$ turns out to be L-subadditive, which leads to Ferniques result (Theorem 3.15 in [4]):

Theorem 3 If two configurations \mathbf{x} and \mathbf{y} satisfy $\left\|x_{i}-x_{j}\right\| \leq\left\|y_{i}-y_{j}\right\|$ for all $1 \leq i<j \leq m$, then

$$
\mathbb{E} \max _{i, j}\left\langle x_{i}-x_{j}, \gamma\right\rangle \leq \mathbb{E} \max _{i, j}\left\langle y_{i}-y_{j}, \gamma\right\rangle
$$

The proof of Theorem 2 is hinged on two independent results. The first one is that an analogous result holds if the function f is twice differentiable and has non-positive mixed partial derivatives. I will establish this in the next section. The second result is the observation that the twice differentiable L-subadditive functions are characterized by exactly this property of having non-positive mixed partial derivatives. Combining the two results with a limiting argument leads to Theorem 2.

Slepian's inequality has important applications in the theory of empirical processes, such as the Sudakov minoration property (see e.g. [4]). More recently there have been applications in statistical learning theory, where it easily yields dimension-free uniform bounds for rather complicated function classes. Examples are the function classes of decision trees or neural networks [1],for k-means clustering, and various related techniques[7] and certain classes of operators involved in transfer learning [8]. The proof of Slepian's inequality is not particularly difficult, but it involves probability theory, linear algebra and analysis, and it is mathematically interesting.

2 Geometry

H and H^{n} have already been introduced. With H_{0}^{n} we denote the set of all configurations $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in H^{n}$ such that no x_{i} is in the hyperplane generated by the other x_{j}, so that the x_{i} form the vertices of a nondegenerate n-simplex.

A function $F: H^{n} \rightarrow \mathbb{R}$ is called isometrically invariant if it is invariant under translations and under unitary treansformations, that is

$$
F\left(x_{1}+y, \ldots, x_{n}+y\right)=F\left(x_{1}, \ldots, x_{n}\right)=F\left(U x_{1}, \ldots, U x_{n}\right)
$$

for all $y \in H$ and unitary $U \in \mathcal{L}(H)$.
For a configuration $\mathbf{x} \in H^{n}$ let the vector $D(\mathbf{x}) \in \mathbb{R}^{n(n-1) / 2}$ be defined by

$$
D(\mathbf{x})_{i j}=\left\|x_{i}-x_{j}\right\|^{2} \text { for } 1 \leq i<j \leq n .
$$

In the following we denote $\Delta=D\left(H^{n}\right)$ and $\Delta_{0}=D\left(H_{0}^{n}\right)$. If $a \in \Delta$ and $a=D(\mathbf{x})$, then the configuration \mathbf{x} is called a realization of a. A function $g: \Delta \rightarrow \mathbb{R}$ is called nondecreasing if $g(a) \leq g(b)$ whenever $a_{i j} \leq b_{i j}$ for all $1 \leq i<j \leq n$.

Lemma 4Δ and Δ_{0} are convex, Δ_{0} is open and Δ is the closure of Δ_{0}.
Suppose that $F: H^{n} \rightarrow \mathbb{R}$ is isometrically invariant. Then there exists $g: \Delta \rightarrow \mathbb{R}$ such that

$$
F=g \circ D .
$$

Furthermore, if F is continuous then g is continuous, and if F is differentiable then g is differentiable in Δ_{0}.

Proof. Let $a \in \mathbb{R}^{n(n-1) / 2}$ and define a symmetric $(n-1) \times(n-1)$-matrix $G(a)$ by $G(a)_{i j}=\left(\bar{a}_{n i}+\bar{a}_{n j}-\bar{a}_{i j}\right) / 2$, where \bar{a} denotes the extension of a to a symmetric matrix vanishing on the diagonal. If $a \in \Delta$ and \mathbf{x} is any realization of a denote with \mathbf{x}_{0} the realization $\mathbf{x}_{0}=\left(x_{1}-x_{n}, \ldots, x_{n-1}-x_{n}, 0\right)$. Then for $i, j \in\{1, \ldots, n-1\}$ we have

$$
G(a)_{i j}=\left\langle x_{i}-x_{n}, x_{j}-x_{n}\right\rangle,
$$

so $G(a)$ is the gramian of the first $n-1$ vectors is \mathbf{x}_{0}. It follows that $G(a)$ is positive semidefinite if $a \in \Delta$ and positive definite if $a \in \Delta_{0}$. Since $a \mapsto G(a)$ is continuous Δ_{0} is open. Let $\left(e_{k}\right)$ be a standard orthonormal basis of H and $G^{1 / 2}(a)$ the positive semidefinite square-root of $G(a)$. We define $\mathbf{x}_{s}(a)$ by

$$
\mathbf{x}_{s}(a)=\left(\sum_{i=1}^{n-1} G^{1 / 2}(a)_{1 i} e_{i}, \ldots, \sum_{i=1}^{n-1} G^{1 / 2}(a)_{(n-1) i} e_{i}, 0\right)
$$

It is easily checked that $\mathbf{x}_{s}(a)$ is a realization of a, which we call the standard realization. Observe that $a \mapsto G(a)$ is differentiable and that $G(a) \mapsto G^{1 / 2}(a)$ is continuous and also differentiable if $G(a)$ is positive definite. It follows that $a \mapsto \mathbf{x}_{s}(a)$ is continuous and for $a \in \Delta_{0}$ also differentiable. If $\lambda \in[0,1]$ and $a_{1}, a_{2} \in \Delta$, then $G\left((1-\lambda) a_{1}+\lambda a_{2}\right)=(1-\lambda) G\left(a_{1}\right)+\lambda G\left(a_{2}\right)$ is positive definite, so by the above construction $(1-\lambda) a_{1}+\lambda a_{2} \in \Delta$, so that Δ is convex. It follows similarly that Δ_{0} is convex. Define

$$
g(a)=F\left(\mathbf{x}_{s}(a)\right), \text { for } a \in \Delta,
$$

which gives the required continuity and differentiability properties of g and also shows that Δ is the closure of Δ_{0}. It remains to verify that $F=g \circ D$, that is $F(\mathbf{x})=F\left(\mathbf{x}_{s}(a)\right)$ for any realization \mathbf{x} of a. Clearly translation by x_{n} is an isometry, so $F(\mathbf{x})=F\left(\mathbf{x}_{0}\right)$. Let $\left(f_{k}\right)$ be any orthonormal basis of H and A an
$(n-1) \times(n-1)$-matrix such that $x_{i}-x_{n}=\sum_{j=1}^{n-1} A_{i j} f_{j}$. Then $A=U G^{1 / 2}(a)$ for orthogonal U, by polar decomposition, so $\sum_{j} \beta_{j} f_{j} \mapsto \sum_{j k} U_{j k} \beta_{j} e_{k}$ is an isometry taking \mathbf{x}_{0} to $\mathbf{x}_{s}(a)$, whence $F(\mathbf{x})=F\left(\mathbf{x}_{0}\right)=F\left(\mathbf{x}_{s}(a)\right)$.

For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f \in C^{2}$, we denote with $\partial_{k} f$ and $\partial_{i k} f$ the second partial derivative w.r.t. the k-th and i-th variables.

Theorem 5 If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f \in C^{2},\left(\partial_{i k} f\right) \leq 0$ for $i \neq k$ and

$$
f\left(r_{1}+t, \ldots, r_{n}+t\right)=f\left(r_{1}, \ldots, r_{n}\right)+g(t)
$$

where $g(-t)=-g(t)$, then the configuration functional

$$
\Phi_{f}(\mathbf{x})=\mathbb{E} f\left(\left\langle x_{1}, \gamma\right\rangle, \ldots,\left\langle x_{n}, \gamma\right\rangle\right) \text { for } \mathbf{x} \in H^{n}
$$

is isometrically invariant and satisfies

$$
\Phi_{f}(\mathbf{x}) \leq \Phi_{f}(\mathbf{y}) \text { if }\left\|x_{i}-x_{j}\right\|^{2} \leq\left\|y_{i}-y_{j}\right\|^{2} \text { for all } 1 \leq i, j \leq n
$$

nondecreasing.
Proof. Orthogonal invariance of Φ is an obvious consequence of the orthogonal invariance of the gaussian expectation, and translation invariance follows because g is odd and the expectation is invariant under the transformation $\gamma \mapsto-\gamma$. This gives isometric invariance.

Differentiability of f implies that Φ_{f} is differentiable. By isometric invariance and the previous lemma there must be a continuous function g on Δ, differentiable on Δ_{0}, such that $g \circ D=\Phi_{f}$. We need to show that g is nondecreasing. Since g is continuous and Δ is the closure of Δ_{0} it is enough to verify this on Δ_{0} and, since g is differentiable on the convex set Δ_{0} it suffices to show that all partial derivatives of g are non-negative.

Fix $a \in \Delta_{0}$ and indices $1 \leq k<l \leq n$. Let $a=D(\mathbf{x})=D\left(x_{1}, \ldots, x_{n}\right)$, where we can assume $x_{k}=0$ by translation invariance. Since $a \in \Delta_{0}$, the x_{i} are linearly independent for $i \neq l$ and we can write $x_{l}=z-y$, where $z \in \operatorname{Span}\left\{x_{i}: i \neq l\right\}$, and $y \perp \operatorname{Span}\left\{x_{i}: i \neq l\right\}$ and $\|y\|>0$. Define a curve $\gamma: \mathbb{R} \rightarrow H^{n}$ by

$$
\gamma(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)=\left(x_{1}, \ldots, x_{k-1}, t y, x_{k+1}, \ldots, x_{n}\right) .
$$

so only the k-th component is made time-dependent and set to ty. Defining $\eta: \mathbb{R} \rightarrow \Delta$ by $\eta(t)=D(\gamma(t))$ we find for $1 \leq i<j \leq n$ that

$$
\dot{\eta}_{i j}(0)=\left(\frac{d}{d t}\right)_{t=0}\left\|x_{i}(t)-x_{j}(t)\right\|^{2}=\left\{\begin{array}{cc}
2\|y\|^{2} & \text { if } i=k \text { and } j=l \\
0 & \text { otherwise }
\end{array}\right.
$$

We therefore have

$$
\begin{equation*}
2\|y\|^{2} \frac{\partial g}{\partial e^{(k l)}}(a)=\sum_{i<j} \frac{\partial g}{\partial e^{(i j)}} \dot{\eta}_{i j}(0)=\frac{d}{d t} g(\eta(t))(0)=\frac{d}{d t} \Phi_{f}(\gamma(t))(0) \tag{1}
\end{equation*}
$$

where $e^{(k l)}$ denotes the basis vector of $\mathbb{R}^{n(n-1) / 2}$ given by $e_{i j}^{(k l)}=1$ if $i=k$ and $j=l$ and zero else.

We now write any $\gamma \in H$ as $\gamma=\gamma_{0}+\gamma^{\perp}$ where $\gamma_{0}=\langle y, \gamma\rangle y /\|y\|^{2}$ and γ^{\perp} is orthogonal to y. Using the shorthand $(\mathbf{x}, \gamma)=\left(\left\langle x_{1}, \gamma\right\rangle, \ldots, 0, \ldots\left\langle x_{m}, \gamma\right\rangle\right)$ we define a function $h_{\gamma}(t)=\left(\partial_{k} f\right)\left(\mathbf{x}, \gamma^{\perp}+t \gamma_{0}\right)$. Observe that $\left\langle x_{i}, y\right\rangle=0$ for $i \neq l$ and $\left\langle x_{l}, y\right\rangle=-\|y\|^{2} \leq 0$. Then

$$
\begin{aligned}
h_{\gamma}^{\prime}(t)\left\langle y, \gamma_{0}\right\rangle & =\sum_{i \neq k}\left(\partial_{i k} f\right)\left(\mathbf{x}, \gamma^{\perp}+t \gamma_{0}\right)\left\langle x_{i}, \gamma_{0}\right\rangle\left\langle y, \gamma_{0}\right\rangle \\
& =\left(\partial_{l k} f\right)\left(\mathbf{x}, \gamma^{\perp}+t \gamma_{0}\right)\left\langle x_{l}, \gamma_{0}\right\rangle\left\langle y, \gamma_{0}\right\rangle \\
& =-\left(\partial_{l k} f\right)\left(\mathbf{x}, \gamma^{\perp}+t \gamma_{0}\right)\langle y, \gamma\rangle^{2} \geq 0,
\end{aligned}
$$

where we used the hypothesis on the mixed partials in the last step.
For $\gamma \in H$ denote $\hat{\gamma}=-\gamma_{0}+\gamma^{\perp}$, corresponding to a reflection on the hyperplane orthogonal to y. The expectation \mathbb{E}_{γ} is invariant under the reflection $\gamma \rightarrow \hat{\gamma}$. So by (1) and $h_{\gamma}^{\prime}(t)\left\langle y, \gamma_{0}\right\rangle \geq 0$

$$
\begin{aligned}
2\|y\|^{2} \frac{\partial g}{\partial e^{(k l)}}(a) & =\frac{d}{d t} \Phi_{f}\left(x_{1}, . ., t y, \ldots, x_{m}\right)(0) \\
& =\mathbb{E}\langle y, \gamma\rangle\left(\partial_{k} f\right)(\mathbf{x}, \gamma) \\
& =\frac{1}{2}\left(\mathbb{E}\langle y, \gamma\rangle\left(\partial_{k} f\right)(\mathbf{x}, \gamma)+\mathbb{E}\langle y, \hat{\gamma}\rangle\left(\partial_{k} f\right)(\mathbf{x}, \hat{\gamma})\right) \\
& =\frac{1}{2}\left(\mathbb{E}\left\langle y, \gamma_{0}\right\rangle\left(\partial_{k} f\right)\left(\mathbf{x}, \gamma^{\perp}+\gamma_{0}\right)-\mathbb{E}\left\langle y, \gamma_{0}\right\rangle\left(\partial_{k} f\right)\left(\mathbf{x}, \gamma^{\perp}-\gamma_{0}\right)\right) \\
& =\frac{1}{2} \mathbb{E}\left\langle y, \gamma_{0}\right\rangle\left(h_{\gamma}(1)-h_{\gamma}(-1)\right) \\
& =\frac{1}{2} \mathbb{E} \int_{-1}^{1} h_{\gamma}^{\prime}(t)\left\langle y, \gamma_{0}\right\rangle d t \geq 0 .
\end{aligned}
$$

So $\partial g / \partial e^{(k l)}$ is nonnegative in Δ_{0} which implies the required monotonicity of g on the convex set Δ_{0}. Continuity of g extends this property to all of Δ.

Clearly the monotonicity property extends to more general functions which are the pointwise limits of C^{2}-functions with non-positive mixed partial derivatives. In the next section we characterize this class of functions.

3 L-subadditive functions

This concept, together with the symmetrically defined L-superadditive functions) was introduced by Lorentz [5] in 1953. For two real numbers s and t we use $s \wedge t$ and $s \vee t$ to denote respectively their minimum and maximum.

Definition 6 For $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{m}$ the minimum $\mathbf{x} \wedge \mathbf{y} \in \mathbb{R}^{m}$ and the maximum $\mathbf{x} \vee \mathbf{y} \in \mathbb{R}^{m}$ are defined by

$$
\begin{aligned}
& (\mathbf{x} \wedge \mathbf{y})=\left(x_{1} \wedge y_{1}, \ldots, x_{m} \wedge y_{m}\right) \\
& (\mathbf{x} \vee \mathbf{y})=\left(x_{1} \vee y_{1}, \ldots, x_{m} \vee y_{m}\right)
\end{aligned}
$$

Note the translation invariance properties

$$
\begin{aligned}
& (\mathbf{x}+\mathbf{z}) \wedge(\mathbf{y}+\mathbf{z})=(\mathbf{x} \wedge \mathbf{y})+\mathbf{z} \\
& (\mathbf{x}+\mathbf{z}) \vee(\mathbf{y}+\mathbf{z})=(\mathbf{x} \vee \mathbf{y})+\mathbf{z}
\end{aligned}
$$

Definition 7 A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is called L-subadditive if

$$
\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{m}: f(\mathbf{x})+f(\mathbf{y}) \geq f(\mathbf{x} \wedge \mathbf{y})+f(\mathbf{x} \vee \mathbf{y})
$$

Lemma 8 Every locally integrable L-subadditive function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is the pointwise limit of infinitely differentiable L-subadditive functions f_{n}. If f is continuous the convergence is uniform on compact subsets of \mathbb{R}^{m}. If f has the property that

$$
f\left(r_{1}+t, \ldots, r_{n}+t\right)=f\left(r_{1}, \ldots, r_{n}\right)+g(t)
$$

where $g(-t)=-g(t)$, then f_{n} can be chosen to have the same property with some appropriate g_{n}.

Proof. Choose a suitable sequence of nonnegative test functions h_{n} such that such that $f_{n}=f * h_{n} \rightarrow f$ pointwise (or uniformly on compact subsets if f is continuous). Since $f * h_{n}$ is C^{∞} it suffices to show that $f * h$ is L-subadditive for every positive measurable $g \in L_{1}$. But

$$
\begin{aligned}
f * h(\mathbf{x})+f * h(\mathbf{y}) & =\int_{\mathbb{R}^{m}}(f(\mathbf{x}-z)+f(\mathbf{y}-z)) h(z) d z \\
& \geq \int_{\mathbb{R}^{m}}(f(\mathbf{x} \vee \mathbf{y}-z)+f(\mathbf{x} \wedge \mathbf{y}-z)) h(z) d z \\
& =f * g h \mathbf{x} \wedge \mathbf{y}+f * h(\mathbf{x} \vee \mathbf{y})
\end{aligned}
$$

This proves the first part. For the second it is easily verified that

$$
f_{n}\left(r_{1}+t, \ldots, r_{n}+t\right)=f_{n}\left(r_{1}, \ldots, r_{n}\right)+g(t)\left(\int_{\mathbb{R}^{m}} h_{n}(z) d z\right)
$$

Below I denote ∂_{i} for $\partial / \partial r_{i}$ and $\partial_{i j}$ for $\partial^{2} / \partial r_{i} \partial r_{j}$, where the partial derivatives are understood in the sense of distributions. The L-subadditive functions are completely characterized by the sign of mixed second partial derivatives:

Theorem 9 If $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is locally integrable then f is L-subadditive if and only if $\partial_{k l} f \leq 0$, in the sense of distributions, for all $k \neq l$.

Proof. Suppose first that $f \in C^{2}$. Suppose that f is L-subadditive and let $\mathbf{x} \in \mathbb{R}^{m}, k, l \in\{1, \ldots, m\}$. Since $f \in C^{2}$ we have (suppressing the dependence of
f on other coordinates than x_{k} and r_{l})

```
\(\left(\partial_{k l} f\right)(\mathbf{x})\)
\(=\lim _{0<s, t \rightarrow 0}(s t)^{-1}\left(f\left(x_{k}+s, x_{l}+t\right)-f\left(x_{k}, x_{l}+t\right)-\left(f\left(x_{k}+s, x_{l}\right)-f\left(x_{k}, x_{l}\right)\right)\right)\)
\(=\lim _{0<s, t \rightarrow 0}(s t)^{-1}\left(f\left(x_{k}+s \vee x_{k}, x_{l} \vee x_{l}+t\right)+f\left(x_{k}+s \wedge x_{k}, x_{l} \wedge x_{l}+t\right)\right.\)
\(\left.-\left(f\left(x_{k}, x_{l}+t\right)+f\left(x_{k}+s, x_{l}\right)\right)\right)\)
\(\leq 0\),
```

which proves the only-if part.
Suppose now that $\partial_{k l} f \leq 0$ for all $k \neq l$ and let \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{m}$. Define curves ξ and $\eta:[0,1] \rightarrow \mathbb{R}^{m}$ by

$$
\begin{aligned}
\boldsymbol{\xi}(t) & =(1-t) \mathbf{x}+t(\mathbf{x} \wedge \mathbf{y}) \\
\boldsymbol{\eta}(t) & =(1-t)(\mathbf{x} \vee \mathbf{y})+t \mathbf{y}
\end{aligned}
$$

Let $I \subseteq\{1, \ldots, m\}$ be the set of indices such that $x_{i}>y_{i}$. Observe that for $i \in I$ we have

$$
\xi_{i}(t)=\eta_{i}(t)=(1-t) x_{i}+t y_{i}
$$

while for $i \notin I$ we have $\xi_{i}(t)=x_{i}$ and $\eta_{i}(t)=y_{i}$ for all t. Now define a real function h by $h(t)=f(\boldsymbol{\xi}(t))-f(\boldsymbol{\eta}(t))$. To show that f is L-subadditive it suffices to show that $h(1) \leq h(0)$, which will follow if we can show that $h^{\prime}(t) \leq 0$. Fix any t. We have

$$
h^{\prime}(t)=\sum_{i \in I}\left[\partial_{i} f(\boldsymbol{\eta}(t))-\partial_{i} f(\boldsymbol{\xi}(t))\right]\left(x_{i}-y_{i}\right) .
$$

To show that this is negative we define a curve $\boldsymbol{\chi}:[0,1] \rightarrow \mathbb{R}^{m}$ by $\chi(s)=$ $(1-s) \boldsymbol{\xi}(t)+s \boldsymbol{\eta}(t)$. Observe that

$$
\chi_{i}(s)=\left\{\begin{array}{cll}
(1-t) x_{i}+t y_{i} & \text { if } & i \in I \\
(1-s) x_{i}+s y_{i} & \text { if } & i \notin I
\end{array} .\right.
$$

We therefore obtain

$$
\begin{aligned}
h^{\prime}(t) & =\sum_{i \in I}\left[\partial_{i} f(\boldsymbol{\chi}(1))-\partial_{i} f(\boldsymbol{\chi}(0))\right]\left(x_{i}-y_{i}\right) \\
& =\sum_{i \in I} \int_{0}^{1} \frac{d}{d s} \partial_{i} f(\boldsymbol{\chi}(s)) d s\left(x_{i}-y_{i}\right) \\
& =\int_{0}^{1} \sum_{i \in I} \sum_{j \notin I} \partial_{i j} f(\boldsymbol{\chi}(s))\left(y_{j}-x_{j}\right)\left(x_{i}-y_{i}\right) d s \\
& \leq 0 .
\end{aligned}
$$

The inequality holds because $\left(y_{j}-x_{j}\right)\left(x_{i}-y_{i}\right) \geq 0$ for $i \in I$ and $j \notin I$.

We have shown that the announced result holds for $f \in C^{2}$. Now let $k \neq l$ and let f be locally integrable and h_{n} and f_{n} as in Lemma 8. Since

$$
\partial_{k l} f_{n}=\partial_{k l}\left(f * h_{n}\right)=\left(\partial_{k l} f\right) * h_{n}
$$

we have $\left(\partial_{k l} f\right) \leq 0 \Longrightarrow \partial_{k l} f_{n} \leq 0 \Longrightarrow f_{n}$ is L-subadditive. Since L-subadditivity is preserved under pointwise limits this implies that f is L subadditive. Conversely, by the previous Lemma, if f is L-subadditive then so is f_{n}, whence $\partial_{k l} f_{n} \leq 0 \Longrightarrow \partial_{k l} f \leq 0$.

4 Putting it together

Proof of Theorem 2. By Lemma 8 we can find a sequence f_{n} of L-subadditive C^{∞}-functions such that $f_{n} \rightarrow f$ and

$$
f_{n}\left(r_{1}+t, \ldots, r_{n}+t\right)=f_{n}\left(r_{1}, \ldots, r_{n}\right)+h_{n}(t),
$$

where $h_{n}(-t)=-h_{n}(t)$. By Theorem 9 we have $\partial_{k l} f_{n} \leq 0$ for all $k \neq l$, so that f_{n} satisfies the hypotheses of Theorem 5. $\Phi_{f_{n}}$ has therefore the required monotonicity property, which is preserved under the limit $f_{n} \rightarrow f$, because f and f_{n} are tempered distributions integrated against Gaussians.

Proof of Theorem 1. The maximum function $\left(x_{1}, \ldots, x_{m}\right) \mapsto \max \left\{x_{1}, \ldots, x_{m}\right\}$ is L-subadditive: Take $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{m}$, wlog assume $\max (\mathbf{x}) \geq \max (\mathbf{y})$. Then $\max (\mathbf{x} \vee \mathbf{y}) \leq \max (\mathbf{x})$ and $\max (\mathbf{x} \wedge \mathbf{y}) \leq \max (\mathbf{y})$ and adding these inequalities shows L-subadditivity. We also have

$$
\max \left\{x_{1}+t, \ldots, x_{n}+t\right\}=\max \left\{x_{1}, \ldots, x_{n}\right\}+t
$$

so $f=\max$ satisfies the hypotheses of Theorem 2 with $g(t)=t$.
Proof of Theorem 3. Consider the function

$$
\operatorname{diam}\left(x_{1}, \ldots, x_{m}\right)=\max _{i, j}\left(x_{i}-x_{j}\right)
$$

Take $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{m}$ and consider the quantity

$$
A_{i j k l}=x_{i} \vee y_{i}-x_{j} \vee y_{j}+x_{i} \wedge y_{i}-x_{j} \wedge y_{j}
$$

Assume first $x_{i} \geq y_{i}$. Then if $y_{l}<x_{l} \Longrightarrow A_{i j k l} \leq x_{i}-x_{j}+y_{k}-y_{l} \leq \operatorname{diam}(\mathbf{x})+\operatorname{diam}(\mathbf{y})$, and $y_{l} \geq x_{l} \Longrightarrow A_{i j k l} \leq x_{i}-x_{l}+y_{k}-y_{j} \leq \operatorname{diam}(\mathbf{x})+\operatorname{diam}(\mathbf{y})$. Analogous inequalities hold if $x_{i}<y_{i}$, so that in all cases $A_{i j k l} \leq \operatorname{diam}(\mathbf{x})+\operatorname{diam}(\mathbf{y})$. Maximizing over all pairs (i, j) and (k, l) shows that diam is L-subadditive. It is also invariant under translations.

Now let ψ be as in the theorem. We find
$\partial_{k l}(\psi(\operatorname{diam}(\mathbf{x})))=\psi^{\prime \prime}(\operatorname{diam}(\mathbf{x}))\left(\partial_{k} \operatorname{diam}\right)(\mathbf{x})\left(\partial_{l} \operatorname{diam}\right)(\mathbf{x})+\psi^{\prime}(\operatorname{diam}(\mathbf{x}))\left(\partial_{k l} \operatorname{diam}\right)(\mathbf{x})$.

The second term on the right is non-positive because ψ is nondecreasing and by L-subadditivity of diam combined with by Theorem 9 . By convexity of ψ we get $\psi^{\prime \prime}(\operatorname{diam}(\mathbf{x})) \geq 0$. But the product $\left(\partial_{k} \operatorname{diam}\right)(\mathbf{x})\left(\partial_{l} \operatorname{diam}\right)(\mathbf{x})$ is nonzero only if either $\operatorname{diam}(\mathbf{x})=x_{k}-x_{l}$ or $\operatorname{diam}(\mathbf{x})=x_{l}-x_{k}$. In both cases the prosuct is negative, so $\partial_{k l}(\psi \circ$ diam $) \leq 0$. So $\psi \circ$ diam is L-subadditive and satisfies the hypotheses of 2 with $g(t)=0$.

References

[1] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. Journal of Machine Learning Research, 3: 463-482, 2002.
[2] F. W. Huffer. Slepian's Inequality via the central limit theorem, The Canadian Journal of Statistics, Vol. 14, No. 4, pp. 367-370, 1986
[3] K. Joag-Dev, M. D. Perlman, L. D. Pitt. Association of normal random variables and Slepian's inequality. The Annals of Probability, Vol. 11, No. 2, pp. 451-455
[4] M. Ledoux, M. Talagrand. Probability in Banach Spaces, Springer, 1991.
[5] G. G. Lorentz. An inequality for rearrangements. Amer. Math. Monthly, 60, 176-179, 1953
[6] P. Massart. Concentration inequalities and model selection. Available online
[7] A. Maurer, M. Pontil, Uniform error bounds for K-dimensional coding schemes in Hilbert spaces, ALT 2008.
[8] A. Maurer, Transfer bounds for linear feature learning, Machine Learning $75,3,327-350,2009$
[9] D. Slepian. The one-sided barrier problem for Gaussian noise. Bell System Tech. J. 41, 463-501, 1962

