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Abstract

A bound uniform over various loss-classes is given for data generated by stationary
and ϕ-mixing processes, where the mixing time (the time needed to obtain approx-
imate independence) enters the sample complexity only in an additive way. For
slowly mixing processes this can be a considerable advantage over results with
multiplicative dependence on the mixing time. The admissible loss-classes include
functions with prescribed Lipschitz norms or smoothness parameters. The bound
can also be applied to be uniform over unconstrained loss-classes, where it depends
on local Lipschitz properties of the function in question.

1 Introduction

A key problem in learning theory is to give performance guarantees on new, yet unseen data for
hypotheses which are selected on the basis of their performance on a finite number of observations.
To bound the expected loss in terms of the observed average loss with high probability uniformly
over various classes of constrained hypotheses many techniques have been developed. These methods
are quite effective, when the observations are independent, but there are significant difficulties when
they become dependent, as happens for many stochastic processes, for example in the study of
dynamical systems. A popular approach assumes the process to be stationary and mixing, so that
future observations are nearly independent of a sufficiently distant past.

If the Xi are observations becoming approximately independent after τ increments of time, then
(X1, X1+τ , X1+2τ , ..., X1+nτ ) can be treated as a vector of n independent observations, to which
the law of large numbers can be applied, modulo a correction term dependent on τ . An approach
based on this idea using nearly independent data blocks has been introduced by [22] and since been
used in various forms by many authors ([15], [16], [20], [17], [1], and others) to port established
techniques and results from the independent to the dependent setting.

There are two problems with this approach. The more philosophical one is, that, while mixing appears
to be a sensible assumption in many situations, it is difficult to estimate its quantitative properties
from a single sample path, although some significant progress has been made recently for Markov
chains ([11], [21]).

The other more practical limitation is that to obtain the same bound on the estimation error as for
independent data, the number of necessary observations is multiplied with the mixing time τ . This is
a major problem when the process mixes very slowly. On the other hand it seems difficult to obtain
general results, when the mixing assumption is abandoned altogether, although there are results
without mixing in the more specialized settings of linear and generalized linear dynamical systems
([19], [10]).

This work presents a data-dependent generalization bound for ϕ-mixing processes with stationary
distribution π.The π-expected risk of hypotheses and the probability of excessive losses are bounded
by an empirical functional with high probability uniform over the class of hypotheses.



One advantage of the approach is that the mixing time enters only additively in the required number
of observations. For slowly mixing processes this can reduce the sample complexity by an order of
magnitude.

Another advantage is that it allows for rather large function classes, such as the classes of all functions
with prescribed Lipschitz norm or γ-smoothness. Constraints on the Lipschitz norm have been
used in generalization bounds for deep neural networks ([3]). Because of its small constants and
strong data-dependence our bound may be competitive even in the iid setting, at least for favourable
data distributions. It will also be shown below, that our bound can be uniform over completely
unconstrained loss classes, where it depends only on local properties of the functions at the sample
path.

The price paid is that we abandon the average loss on the observations and replace it by a maximum.
This obvious disadvantage is somewhat alleviated by the possibility to allow a small number of
outliers, so the strict maximum can be replaced by the maximal loss on most of the observations.
Another disadvantage is, that we require the stronger ϕ-mixing assumption, while for most previous
results the weaker β- or α-mixing assumptions suffice.

2 Notation and preliminaries

We use capital letters for random variables, bold letters for vectors, and the set {1, ...,m} is denoted
[m]. The cardinality, complement and indicator function of a set A are denoted |A|, Ac and 1A
respectively. For a real-valued function f on a set A the supremum of its values is denoted ‖f‖∞.

Throughout the following (X , σ) is a measurable space and X = (Xi)i∈N a stochastic process with
values inX . For I ⊆ N, σ (I) denotes the sigma-field generated by (Xi)i∈I and µI the corresponding
joint marginal. The process is assumed to be stationary, so that ∀I ⊆ Z, i ∈ N, µI = µI+i, the
stationary distribution being denoted π = µ{0} = µ{k}. It is called ergodic if for every A ∈ σ with
π (A) > 0 we have Pr {∀k ≤ n,Xk /∈ A} → 0 as n→∞. The ϕ-mixing and α-mixing coefficients
([22], [6]) are defined for any τ ∈ N as

ϕτ = sup {|Pr (A|B)− PrA| : k ∈ Z, A ∈ σ ({k}) , B ∈ σ ({i : i < k − τ})} ,
ατ = sup {|Pr (A ∩B)− PrAPrB| : k ∈ Z, A ∈ σ ({k}) , B ∈ σ ({i : i < k − τ})} .

The process is called ϕ-mixing (α-mixing) if φτ → 0 (ατ → 0) as τ →∞.

A loss class F is a set of measurable functions f : X → [0,∞), where f is to be thought of as a
hypothesis composed with a fixed loss function. Very often X = Z × Z ′, where Z is a measurable
space of "inputs", Z ′ is a space of "outputs", "covariates" or "labels", H is a set of functions
h : Z → R and ` is a fixed loss function ` : R×Z ′ → [0,∞). The loss class in question would then
be the class of functions

F = {(z, z′) 7→ ` (h (z) , z′) : h ∈ H} .

3 Gauge pairs and generalization

Definition 3.1. Let F be a class of nonnegative loss functions on a space X . A gauge pair for F
is a pair (g,Φ) where g is a measurable function g : X × X → [0,∞] such that g (x, y) = 0 iff
x = y, and Φ is a function Φ : F × X → [0,∞] such that for all x, y ∈ X and f ∈ F , Φ (f, ·) is
measurable and

f (y) ≤ g (y, x) + Φ (f, x) .

Intuitively g (y, x) should measure the extent to which members ofF can generalize from an observed
datum x to a yet unobserved datum y. It helps to think of g as a nondecreasing function of a metric,
but g need not be symmetric.

An example. The simplest example is furnished by the class of L-Lipschitz functions on a metric
space (X , d). This means that f (y)− f (x) ≤ Ld (y, x) for all x, y ∈ X and f ∈ F . Adding f (x)
to the inequality shows that (g : (y, x) 7→ Ld (y, x) ,Φ : (f, x) 7→ f (x)) is a gauge pair. In the most
typical case, when X = Z × Z ′, a product metric is used. In classification, when Z ′ is a discrete set
of labels, a discrete metric is used onZ ′.

2



More concretely Z could be a subset of RD, Z ′ = {−1, 1}, H : Z → R a set of neural networks
of (euclidean) Lipschitz norm at most L, and ` : (t, y) ∈ R×Z ′ 7→ η (yt) ∈ [0,∞), where η
is a hinge or logistic loss. This is a standard situation in binary classification. The loss class is
F = {(z, z′) 7→ ` (〈h, z〉 , z′) : h ∈ H}. Define d ((y, y′) , (x, x′)) = ‖y − x‖ + B |y′ − x′| and
verify that ` (h (y) , y′)− ` (h (x) , x′) ≤ Ld ((y, y′) , (x, x′)).

Before giving more examples of gauge pairs we state our main result. One part bounds the probability
of excessive losses, the other part bounds the risk properly.
Theorem 3.2. Let X = (Xi)i∈N be a stationary process with values in X and invariant distribution
π, F a class of measurable functions f : X → [0,∞) and (g,Φ) a gauge pair for F . Let X ∼ π be
independent of X, τ ∈ N, n > τ , S ⊆ [n− τ ] and δ > 0. Let a ∈ {1, 2}.
(i) If a = 1, for any t > 0, with probability at least 1− δ in the sample path Xn

1 = (X1, ..., Xn)

sup
f∈F

Pr

{
f (X) > max

j∈S∩[n−τ ]
Φ (f,Xj) + t |Xn

1

}
≤ a

n− τ

n∑
k=τ+1

1

{
min

i∈S∩[k−τ ]
g (Xk, Xi) > t

}
+ ϕ (τ) +

√
2 ln (1/δ)

n− τ
.

(ii) If a = 1, with ‖F‖∞ = supf∈F,x∈X f (x) and ‖g‖∞ = supx,y∈X g (y, x), then with probability
at least 1− δ in the sample path

sup
f∈F

E [f (X)]− max
i∈S∩[n−τ ]

Φ (f,Xi)

≤ a

n− τ

n∑
k=τ+1

min
i∈S∩[n−τ ]

g (Xk, Xi) + ‖F‖∞ ϕτ + ‖g‖∞

√
2 ln (1/δ)

n− τ
.

(iii) For a = 2 the term
√

2 ln (1/δ) / (n− τ) in both bounds can be replaced by e ln (1/δ) / (n− τ).

Remark 1. Both (i) and (ii) have two data-dependent terms, the first of which depends on the choice
of the function f . It is the term, which a learning algorithm should try to minimize. In the example
above it depends only on the evaluation of f at the sample points, but in general it may depend on any
local properties of f . In part (i), which limits the probability of excessive losses, the appearance of
the maximum is perhaps more natural. In both (i) and (ii) the first term on the R.H.S. is expected to
be the dominant term. The preferred choice is a = 1, and part (iii) may have less practical relevance.

Remark 2. The presence of the maximum on the L.H.S. is clearly an unpleasant feature. A union
bound over the "good" set S can allow for a small fraction of errors. This problem will be addressed
in the next section, where it is shown that a union bound over the "good" set S (introduced exclusively
for this purpose) can allow for a small fraction of errors. The bounds are intended to target the
realizable or nearly realizable case, when the underlying function is in F , with small noise and very
few outliers, which might be hidden in the complement of the set S. Note that many modern learning
machines which implement Lipschitz functions achieve near zero training error.

Remark 3. The terms

Gt =
2

n− τ

n∑
k=τ+1

1

{
min

i∈S∩[k−τ ]
g (Xk, Xi) > t

}
or G =

2

n− τ

n∑
k=τ+1

min
i∈S∩[k−τ ]

g (Xk, Xi)

can be computed from the data and interpreted as a complexity of the sample path relative to g.
In Section 5 it will be proven, that, under an assumption of total boundedness of the support of π
(defined relative to g) and ergodicity of the process, the terms converge to zero in probability. For
sufficiently fast α-mixing they can be shown to converge to zero almost surely. This condition is
sufficient, but not necessary. The key property is recurrence, which may be independent of mixing
and does not require an approach to the stationary distribution. Section 5 concludes with an example
of recurrence and arbitrarily slow mixing.

Remark 4. Setting τ = 1 and ϕτ = 0 gives a version for iid variables. This may be interesting in its
own right in comparison with other bounds for function classes with bounded Lipschitz norm, for
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which we take [3] as a prototypical example. We do not expect Theorem 3.2 to be competitive in
the general iid setting, but the applicability to unconstrained function classes, as shown in Section 6,
might be an advantage.

The proof of Theorem 3.2 (iii) requires the following tail bound for martingale difference sequences,
which is established in Section A.1.

Lemma 3.3. Let R1, ..., Rn be real random variables 0 ≤ Rj ≤ 1 and let σ1 ⊆ σ2 ⊆ ...σn be a
filtration such that Rj is σj-measurable. Let V̂ = 1

n

∑
j Rj , V = 1

n

∑
j E [Rj |σj−1]. Then

Pr
{
V > 2V̂ + t

}
≤ e−nt/e

and equivalently, for δ > 0,

Pr

{
V > 2V̂ +

e ln (1/δ)

n

}
≤ δ.

Proof of Theorem 3.2. Let f ∈ F . From stationarity we obtain for every k, τ < k ≤ n and u > 0

Pr {f (X) > u} = Pr
X∼µk

{f (X) > u}

≤ Pr
{
f (Xk) > u | (Xi)i∈[k−τ ]

}
+ ϕ (τ) ,

where the inequality follows from the definition of the ϕ-mixing coefficients, which allows us
to replace the independent variable X by the sample path observation Xk, conditioned on ob-
servations more than τ time increments in the past. But if f (Xk) > u, then by the definition
of gauge pairs we must have g (Xk, Xi) + Φ (f,Xi) > u, for every i ∈ [k − τ ], or, equiva-
lently, mini∈[k−τ ] g (Xk, Xi) + Φ (f,Xi) > u, which certainly implies mini∈S∩[k−τ ] g (Xk, Xi) +
maxj∈S∩[n−τ ] Φ (f,Xj) > u. Thus

Pr {f (X) > u} ≤ Pr

{
min

i∈S∩[k−τ ]
g (Xk, Xi) + max

j∈S∩[n−τ ]
Φ (f,Xj) > u | (Xi)i∈[k−τ ]

}
+ϕ (τ) .

Averaging this inequality over all values of k, τ < k ≤ n, and a change of variables t = u −
maxj∈S∩[n−τ ] Φ (f,Xj) gives

Pr

{
f (X) > max

j∈S∩[n−τ ]
Φ (f,Xj) + t |Xn

1

}
(1)

≤ 1

n− τ

n∑
k=τ+1

Pr

{
min

i∈S∩[k−τ ]
g (Xk, Xi) > t | (Xi)i∈[k−τ ]

}
+ ϕ (τ) .

We first prove (i). Let σk be the σ-algebra generated by (Xi)i∈[k] and Rk =

1
{

mini∈S∩[k−τ ] g (Xk, Xi) > t
}

, so that Rk is σk-measurable. Then E [Rk|σk−1] =

Pr
{

mini∈S∩[k−τ ] g (Xk, Xi) > t | (Xi)i∈[k−τ ]

}
and thus E [Rk|σk−1] − Rk is a Martingale dif-

ference sequence with values in [−1, 1] and by the Hoeffding-Azuma inequality ([14])

1

n− τ

n∑
k=τ+1

Pr

{
min

i∈S∩[k−τ ]
g (Xk, Xi) > t | (Xi)i∈[k−τ ]

}

≤ 1

n− τ

n∑
k=τ+1

1

{
min

i∈S∩[k−τ ]
g (Xk, Xi) > t

}
+

√
2 ln (1/δ)

n− τ
.

Substitute in the right hand side of (1). As the the right hand side is independent of f , we can take
the supremum over f on the left hand side to complete the proof of (i).
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(ii) We use integration by parts and integrate the left hand side of (1) from zero to ‖F‖∞. This gives

E [f (X)]− max
j∈S∩[n−τ ]

Φ (f,Xj)

≤ 1

n− τ

n∑
k=τ+1

∫ ‖F‖∞
0

E
[
1

{
min

i∈S∩[k−τ ]
g (Xk, Xi) > t

}
| (Xi)i∈[k−τ ]

]
dt+ ‖F‖∞ ϕ (τ)

=
1

n− τ

n∑
k=τ+1

E
[

min
i∈S∩[k−τ ]

g (Xk, Xi) | (Xi)i∈[k−τ ]

]
+ ‖F‖∞ ϕ (τ) .

Now we use the Hoeffding-Azuma inequality just as in part (i). Again we can take the supremum on
the left hand side. This completes the proof of (ii).

To prove (iii) use Lemma 3.3 instead of the Hoeffding-Azuma inequality ([14]).

4 Relaxation of the maximal loss

To allow a fixed fraction of excess errors we use a union bound over all possible sets S of fixed
cardinality as in Theorem 3.2, where the complement [n− τ ] \S = Sc is the set of "bad data points"
or outliers. Now let α = (n− τ − |S|) / (n− τ) be the allowed fraction of excess errors. The union
bound replaces the term ln (1/δ) by ln

((
n−τ
m

)
/δ
)
. From Stirling’s approximation we can obtain for

N ∈ N the bound

ln

(
N

αN

)
≤ NH (α) + Rest (N,α) ,

where H (α) = α ln 1
α + (1− α) ln 1

1−α is the entropy of an α-Bernoulli variable and

Rest (N,α) = − ln
(√

2πα (1− α)N
)

+
1

12N
≤

{
0 if 2πN ≥ 1

α(1−α)
ln(πN/2)

2 otherwise
.

This leads to the following version of Theorem 3.2 (i), where for simplicity we give only the second
conclusion.
Corollary 4.1. Under the condition of Theorem 3.2 let α ∈ [0, 1] be such that α (n− τ) ∈ N. Then
with probability at least 1 − δ in the sample path we have for every S ⊆ [n− τ ] of cardinality
α (n− τ) and every f ∈ F that

Eπ [f (X)]− max
i∈[n−τ ]∩S

Φ (f,Xi)

≤ 2

n− τ

n∑
k=τ+1

min
i∈[k−τ ]∩S

g (Xk, Xi)+‖F‖∞ ϕτ+e ‖g‖∞

(
H (α) +

Rest (n− τ, α) + ln (1/δ)

n− τ

)
.

Remark. Ignoring the Rest-term, which is at most of order ln (n) /n, there is an additional penalty
e ‖g‖∞H (α) depending on the error fraction α. This can be interpreted as an additional empirical
error term. Since H (α)→ 0 as α→ 0, the bound tolerates a small number of excess errors. On the
other hand H (α) /α→∞ logarithmically as α→ 0, so the penalty is certainly exaggerated relative
to a conventional empirical error term, which would simply be α.

5 The complexity of the sample path

The dominant term on the right hand side of the bounds of Theorem 3.2 is likely to be the complexity
term

G (X, n, τ, g) =
1

n− τ

n∑
k=τ+1

min
i∈[k−τ ]

g (Xk, Xi) ,

where for simplicity we omit the set S and concentrate on the term as in appears in part (ii) of
the theorem. It is a merit of Theorem 3.2 that we can observe this quantity directly and thus take
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advantage of favourable situations. To get some idea of what characterizes these favourable situations
it is nevertheless interesting to study the behavior ofG in general, although our quantitative worst-case
guarantees are disappointing.

Some standard concepts of the theory of metric spaces, such as diameters and covering numbers,
extend to the case, when the metric is replaced by the function g.

Definition 5.1. The g-diameter diamg (F ) is supx,y∈F g (y, x). For A ⊆ X and ε > 0 we write

N (A, g, ε) = min

N : ∃C1, ..., CN , diamg (Ci) ≤ ε and A ⊆
⋃
j∈[N ]

Cj

 .

A ⊆ X is g-totally bounded if N (A, g, ε) <∞ for every ε > 0.

This definitions are intuitive if one thinks of g as an increasing function of the metric. It must still be
kept in mind that g may not be symmetric nor obey the triangle inequality. The proof of the following
theorem is given in Section A.3.

Theorem 5.2. Let X = (Xi)i∈N be a stationary process and assume the support of π to be g-totally
bounded.

(i) If X is ergodic, then for any τ ∈ N, we have G (X, n, τ, g)→ 0 in probability as n→∞
(ii) If there exists q > 1 and A > 0 such that the α-mixing coefficients satisfy ατ ≤ Aτ−q for all
τ ∈ N, then for p ∈ (2/ (1 + q) , 1) we have G (X, n, dnpe , g)→ 0 almost surely.

(iii) In general we have

Pr {G (X, n, τ, g) > t} ≤ N (supp (π) , g, t/2)

e (bnt/ (2τ)c − 1)
+

⌈
nt

2τ

⌉
ατ .

While part (i) is encouraging, the worst case bound (iii) is very weak for several reasons.

1. It scales with the covering number of the support of π. This behavior persists in the iid case,
when τ = 0 and ατ = 0. Let us accept this scaling at face value. We can expect the bound of
Theorem 3.2 to be strong only if the support of the invariant distribution is a small and essentially
low dimensional object, even though it may be embedded in a complicated way in some high or even
infinite dimensional ambient space.

2. It depends strongly on the mixing properties of the process. In particular it scales with τ/n, so as
to exhibit a multiplicative scaling of the sample complexity with the mixing time, and to refute one of
the principal claims made about this paper.

On the one hand these weaknesses highlight the benefit of observing G directly. More importantly
(iii) remains a worst case bound, and the multiplicative scaling with τ is not generic. The decay of G
depends on recurrence rather than mixing, and mixing is just the only way to give general quantitative
bounds on recurrence. M. Kac [13] has already shown that for an ergodic process the expected
recurrence time of a set A is 1/π (A), but this appears to be the only moment of the recurrence time,
which can be controlled without mixing. For α and ϕ-mixing processes Chazottes [8] gives rapidly
decreasing tails of the recurrence time, but these would lead to similar bounds as in the proof of (ii)
above.

While mixing implies ergodicity and recurrence, the converse does not hold. A simple example is the
deterministic unit rotation on the N -cycle, the transition matrix being

P (i, j) = δi,(j+1) mod N .

This Markov chain is ergodic and not mixing, but the recurrence time is N and obviously
G (X, n,N, g) = 0 for all n > N with g being the discrete metric g (y, x) := 1 iff y 6= x and
g (x, x) := 0. Of course Theorem 3.2 does not apply, but if we add some randomness, say

P (i, j) = (1− p) δi,(j+1) mod N +
p

N
, for p > 0
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the process becomes exponentially mixing, with spectral gap p, relaxation time τrel = p−1 and mixing
time τ ≥ p−1 ln (1/ε) to have distance ε from stationarity. This gives an estimate of the mixing
coefficients ατ ≥ exp (−τp). The probability that the process visits all states in N steps is (1− p)N ,

and the probability that it hasn’t visited all states in τ steps is bounded by
(

1− (1− p)N
)τ/N

. As

p → 0 the mixing time diverges, but the recurrence times converges to N . There are 2N discrete
Lipschitz functions, so the dominant term in the classical bounds (assuming the realizable case)
would scale as τN while G scales as N .

Clearly a similar phenomenon is expected with irrational rotations on the circle and more general
for any quasiperiodic motion, which means that the infinite trajectories are dense on the support of
the invariant measure. Arnold and Avez [2] have shown that classical dynamical systems may be
periodic, quasiperiodic or chaotic, and that the last two cases are generic. Adding a perturbation can
make a quasiperiodic system mixing, but the mixing can be made arbitrarily slow.

6 Gauge pairs and unconstrained function classes

In Section 3 there was the more concrete example of Lipschitz classes, where the function g was essen-
tially the metric. In this section we briefly discuss smooth classes and then show, that generalization
bounds are possible even for completely unconstrained function classes.

Smooth functions. A real-valued, differentiable function on an open subset O of a Hilbert space is
called γ-smooth if γ > 0 and for all x, y ∈ X

‖f ′ (y)− f ′ (x)‖ ≤ γ ‖y − x‖ .
γ-smoothness plays a role in non-convex optimization because of the descent-lemma, giving a
justification to the method of gradient descent [7]. Nonnegative γ-smooth functions satisfy special
inequalities as in the following lemma, with proof Section A.2.
Lemma 6.1. Let f be a nonnegative, differentiable, γ-smooth function on a convex open subset O of
a Hilbert space and λ > 0. Then for any x, y ∈ O

f (y) ≤
(
1 + λ−1

)
f (x) + (1 + λ)

γ

2
‖y − x‖2 .

If f (x) = 0 then f (y) ≤ γ
2 ‖y − x‖

2.

So g : (y, x) 7→ (1 + λ) γ2 ‖y − x‖
2 and (f, x) 7→

(
1 + λ−1

)
f (x) make a gauge pair for the class

of γ-smooth functions on O, to which Theorem 3.2 could be applied.

Intuitively the passage from the metric g ≈ ‖y − x‖ to its square g ≈ ‖y − x‖2 has positive
consequences for the data-complexity term G. This is clear in terms of covering numbers, as
they appear in Theorem 5.2 in the Section 5. If N (supp (π) , g, t) is the number of sets C with
supx,y∈C g (x, y) < t which is necessary to cover the support of π, then N (supp (π) , ‖· − ·‖p , t) =

N
(
π, supp (π) , ‖· − ·‖ , t1/p

)
. Even if π has full support on the unit ball of a D-dimensional

Banach space, and g is the euclidean metric, then N (supp (π) , ‖· − ·‖ , t) = Kt−D ([9]) and
N (supp (π) , ‖· − ·‖p , t) = Kt−D/p, decreasing the covering number by the factor tD(1−1/p) which
can make a big difference already for p = 1.

Local Lipschitz properties. Let F be the class of all measurable functions f : X → [0,∞), and let
ρ be any extended real valued function ρ : X 2 → [0,∞] satisfying ρ (x, y) = 0 ⇐⇒ x = y, and
define L : F × X → [0,∞] by

Lρ (f, x) := sup
y 6=x

f (y)− f (x)

ρ (y, x)
.

Then with Young’s inequality, for p−1 + q−1 = 1, and y, x ∈ X and any f ∈ F

f (y) ≤ f (x) + Lρ (f, x) ρ (y, x) ≤ f (x) +
Lρ (f, x)

p

p
+
ρ (y, x)

q

q
.

It follows that

Φ (f, x) = f (x) +
Lρ (f, x)

p

p
and g (y, x) =

ρ (y, x)
q

q
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define a gauge pair, to which Theorem 3.2 (i) can be applied and gives a high probability bound,
uniform over all non-negative functions. When can we expect this bound to be small?

Suppose (X , d) is a metric space, let r > 0 and define

ρ (y, x) =

{
d (y, x) if d (y, x) ≤ r

+∞ if d (y, x) > r
, so Lρ (f, x) = sup

y:0<d(y,x)≤r

f (y)− f (x)

d (y, x)
.

Lρ (f, x) measures a Lipschitz-type property, localized at x with range r, which is always bounded by
the local Lipschitz constant of f in the ball of radius r about x, but may be substantially smaller (take
f (x1, x2) =

√
x21 + x22sign(x1) in R2. Then Lρ (f, (0, 0)) = 1 but the local Lipschitz constant

is infinite on any ball of nonzero radius about (0, 0)). With p = q = 2 the bound for the iid case
becomes

sup
f∈F

Pr

{
f (X) > max

j∈S∩[n−1]
f (Xj) +

Lρ (f,Xj)
2

2
+ t |Xn

1

}

≤ 1

n− 1

n∑
k=2

1

{
min

i∈S∩[k−1]
d (Xk, Xi)

2
> min

{
t, r2

}}
+

√
2 ln (1/δ)

n− 1
.

Instead of a global constraint on F we require for the chosen function f

1. that the empirical error f (Xj) is small and the chosen function f be nearly flat (Lρ (f,Xj) small)
in the neighborhoods of the sample points Xj . Wide minima are good. These are wide minima in the
data-space however, in contrast to the wide minima often cited as beneficial for deep neural networks.
Note that, if there aren’t too many indices j where f (Xj) + Lρ (f,Xj)

2
/2 is large, these indices

can be collected in the exception set Sc.

2. For most Xk we find some Xi with i < k and ‖Xk −Xi‖ ≤ min
{√

t, r
}

.

Since ρ is unbounded we can only apply Theorem 3.2 part (i) at present. For part (ii) we need a
uniform bound on F , which may simply be postulated, and a bound on ρ, which will weaken the
result above. With some large M <∞ define

ρ (y, x) :=

{
d (y, x) if d (y, x) ≤ r

2 ‖F‖∞M if d (y, x) > r
.

This gives ‖g‖∞ ≤ 2 ‖F‖2∞M2 and Lρ (f,Xj) will be replaced max
{
M−1, Lρ (f,Xj)

}
.

7 Some open questions

• Is the worst-case estimate in Theorem 5.2 (iii) way too pessimistic in practice? The data-
dependend complexity term G could be measured for different processes. This is also
interesting for iid processes. Some preliminary experiments with MNIST give values of
0.23 for g (y, x) = ‖y − x‖ and 0.06 for g (y, x) = ‖y − x‖2 with sample size 1000 for the
character "6" and normalized euclidean distance.

• Can the bound for unconstrained classes be applied to deep neural networks? The local
Lipschitz properties of various networks could be investigated at the sample points, perhaps
using the methods discussed in [12] or [18].
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A Remaining proofs

A.1 Proof of Lemma 3.3

Lemma A.1 (Lemma 3.3 re-stated). Let R1, ..., Rn be real random variables 0 ≤ Rj ≤ 1 and
let σ1 ⊆ σ2 ⊆ ...σn be a filtration such that Rj is σj-measurable. Let V̂ = 1

n

∑
j Rj , V =

1
n

∑
j E [Rj |σj−1]. Then

Pr
{
V > 2V̂ + t

}
≤ e−nt/e

and equivalently, for δ > 0,

Pr

{
V > 2V̂ +

e ln (1/δ)

n

}
≤ δ.
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Proof. Let Yj := 1
n (E [Rj |σj−1]−Rj), so E [Yj |σj−1] = 0.

Then E
[
Y 2
j |σj−1

]
=
(
1/n2

) (
E
[
R2
j |σj−1

]
− E [Rj |σj−1]

2
)
≤ (1/n)

2 E [Rj |σj−1], since 0 ≤
Rj ≤ 1. Define a real function g by

g (t) =
et − t− 1

t2
for t 6= 0 and g (0) =

1

2

It is standard to verify that g (t) is nondecreasing for t ≥ 0 ([14]). Fix λ > 0. We have for all x ≤ λ
that ex ≤ 1 + x+ g (λ)x2. For any β with 0 < β ≤ nλ we then have

E
[
eβYj |σj−1

]
≤ E

[
1 + βYj + g (λ)β2Y 2

j |σj−1
]

= 1 + g (λ)β2E
[
Y 2
j |σj−1

]
≤ exp

(
g (λ)β2E

[
Y 2
j |σj−1

])
≤ exp

(
g (λ)

(
β

n

)2

E [Rj |σj−1]

)
,

where we also used 1 + x ≤ ex. Defining Z0 = 1 and for j ≥ 1

Zj = Zj−1 exp

(
βYj − g (λ)

(
β

n

)2

E [Rj |σj−1]

)
then

E [Zj |σj−1] = exp

(
−g (λ)

(
β

n

)2

E [Rj |σj−1]

)
E
[
eβYj |σj−1

]
Zj−1 ≤ Zj−1.

It follows that E [Zn] ≤ 1. Spelled out this is

1 ≥ E
[
exp

(
β
(
V − V̂

)
− g (λ)β2

n
V

)]
.

If we choose β = nλ then

1 ≥ E
[
exp

(
nλ
(
V − V̂

)
− ng (λ)λ2V

)]
= E

[
exp

(
n
(
1 + 2λ− eλ

)
V − nλV̂

)]
.

Using calculus to maximize the coefficient 1 + 2λ− eλ of V we set λ = ln 2 and obtain

1 ≤ E
[
exp

(
n (2 ln 2− 1)

(
V − ln 2

2 ln 2− 1
V̂

))]
.

Markov’s inequality then gives

Pr

{
V >

ln 2

2 ln 2− 1
V̂ + t

}
≤ exp (− (2 ln 2− 1)nt) .

To get the result we use ln 2/ (2 ln 2− 1) ≤ 2 and 2 ln 2− 1 ≥ 1/e.

Pr
{
V > 2V̂ + t

}
≤ e−nt/e.

A.2 Proof of Lemma 6.1

The following is a version of Lemma 6.1, where the parameter γ is allowed to depend on x.

Lemma A.2. Let f be a nonnegative, differentiable function on a convex open subset O of a Hilbert
space and λ > 0. Fix x ∈ O and suppose that for γ > 0 and all y ∈ O we have

‖f ′ (y)− f ′ (x)‖ ≤ γ ‖y − x‖
Then for any y ∈ O

f (y) ≤
(
1 + λ−1

)
f (x) + (1 + λ)

γ

2
‖y − x‖2 .

If f (x) = 0 then f (y) ≤ γ
2 ‖y − x‖

2.
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Proof. From the fundamental theorem of calculus we get for any x, y ∈ X

f (y) = f (x) +

∫ 1

0

〈f ′ (x+ t (y − x)) , y − x〉 dt

= f (x) + 〈f ′ (x) , y − x〉+

∫ 1

0

〈f ′ (x+ t (y − x))− f ′ (x) , y − x〉 dt

≤ f (x) + 〈f ′ (x) , y − x〉+
γ

2
‖y − x‖2 . (2)

Since f is nonnegative we get for any y and fixed x

〈f ′ (x) , x− y〉 ≤ f (x) +
γ

2
‖y − x‖2 .

Letting t > 0 and x− y = tf ′ (x) / ‖f ′ (x)‖ or y = x− tf ′ (x) / ‖f ′ (x)‖ we obtain after division
by t

‖f ′ (x)‖ ≤ f (x)

t
+
γt

2
.

Using calculus to minimize we find ‖f ′ (x)‖ ≤
√

2γf (x) and from (2) and Young’s inequality

f (y) ≤ f (x) + 2

√
λ−1f (x)λ

γ

2
‖y − x‖2 +

γ

2
‖y − x‖2

≤
(
1 + λ−1

)
f (x) + (1 + λ)

γ

2
‖y − x‖2 .

The other inequality is obtained by letting λ→ 0.

A.3 Proof of Theorem 5.2.

For the proof we need an auxiliary construction, projecting the process onto a partion. If C =
(C1, ..., CN ) is any disjoint partition of X into measurable subsets, define a process Y = (Yi)i∈N
with values in space [N ] by Yi = j ⇐⇒ Xi ∈ Cj . The process Y inherits its ergodicity and mixing
properties from X, in the sense that Y is ergodic whenever X is, and the mixing coefficients of Y
are bounded by the mixing coefficients of X.

Lemma A.3. Assume ‖g‖∞ = 1. Let t ∈ (0, 1), τ ∈ N, n ≥ (1 + 4/t) τ , and that we can cover the
support of π with N disjoint measurable sets C1, ..., CN such that diamg (Cj) < t/2 for all j. Then,
with m (n) = bnt/ (2τ)c,

Pr {G (X, n, τ, g) > t} ≤
N∑
j=1

Pr {∃k > nt/2, Yk = j,∀1 ≤ i ≤ nt/2− τ, Yi 6= j} .

Proof. Write M (n) = m (n) τ . Then

Pr {G (X, n, τ, g) > t}

= Pr

{
1

n− τ

n∑
k=τ+1

min
i∈[k−τ ]

g (Xk, Xi) > t

}

= Pr

 1

n− τ
∑

k:τ<k≤nt/2

min
i:1≤i≤k−τ

g (Xk, Xi) +
1

n− τ

n∑
k:k>nt/2

min
i:1≤i≤k−τ

g (Xk, Xi) > t


≤ Pr

 1

n− τ

n∑
k:k>nt/2

min
i:1≤i≤k−τ

g (Xk, Xi) >
t

2


≤ Pr

{
∃k > nt/2, min

i:1≤i≤nt/2−τ
g (Xk, Xi) >

t

2

}
.
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Recall that diamg (Cj) < t/2. Now assume that Xk ∈ Cj and mini:1≤i≤k−τ g (Xk, Xi) > t/2.
Then none of the Xi can be in Cj because supy∈Cj g (Xk, y) ≤ diamg (Cj) < t/2. We therefore
must have Xi /∈ Cj = C (Xk) for all i. Thus

Pr {G (X, n, τ, g) > t} ≤ Pr {∃k > nt/2,∀i : 1 ≤ i ≤ nt/2− τ,Xi /∈ C (Xk)}

=

N∑
j=1

Pr {∃k > nt/2, Yk = j,∀1 ≤ i ≤ nt/2− τ, Yi 6= j} .

Proof of Theorem 5.2. Since X is g-totally bounded there exists a partition C1, ..., CN such that
diamg (Cj) < t/2 for all j, as required for the previous lemma. We may assume that π (Cj) > 0 and
we work with the induced process Y.

(i) Fix ε > 0. If the underlying process is ergodic, so is the process Yk, and for every j we have

Pr {∀1 ≤ i ≤ n, Yi 6= j} → 0 as n→∞.

Then there is n0 ∈ N such that forall n ≥ n0 we have Pr {∀1 ≤ i ≤ nt/2− τ, Yi 6= j} < ε/N , so
by the lemma

Pr {G (X, n, τ, g) > t} ≤ Pr {∃k > nt/2,∀i : 1 ≤ i ≤ nt/2− τ,Xi /∈ C (Xk)}
≤ Pr {∃j ∈ [N ] ,∀i : 1 ≤ i ≤ nt/2− τ, Yi 6= j} < ε.

(ii) To prove almost sure convergence we use the following consequence of the Borel-Cantelli lemma
([4]): letZn be a sequence of random variables. If for every t > 0 we have

∑
n>1 Pr {|Zn| > t} <∞

then Zn → 0 almost surely as n→∞.

Now note that the events {∃k > nt/2, Yk = j} and {∀i : 1 ≤ i ≤ nt− τ, Yi 6= j} are separated by
a time interval at least τ , so, by the definition of the α-mixing coefficients, we have from the lemma
that

Pr {G (X, n, τ, g) > t}

≤
N∑
j=1

Pr {∃k > nt/2, Yk = j,∀1 ≤ i ≤ nt/2− τ, Yi 6= j}

≤
∑
j

Pr {X ∈ Cj}Pr
⋂

i:1≤i≤nt−2τ
2

{ Xi /∈ Cj}+ ατ

≤
∑
j

Pr {X ∈ Cj}Pr
⋂

i:1≤i≤nt/(2τ)−1

{ Xiτ /∈ Cj}+ ατ

≤
∑
j

π (Cj) (1− π (Cj))
bnt/(2τ)c−1

+

⌈
nt

2τ

⌉
ατ . (3)

Now, setting τ = dnpe and ατ ≤ Aτ−q with p ∈ (2/ (1 + q) , 1), we obtain for sufficiently large n,

Pr {G (X, n, dnpe , g) > t} ≤ N

(
1−min

j
π (Cj)

)bnt2τ c−1
+

⌈
nt

2τ

⌉
ατ

≤ N

(
1−min

j
π (Cj)

)tn1−p−1

+An1−p−qpt.

Since 1 − p − qp < −1, this expression is summable, and the conclusion follows from the Borel-
Cantelli Lemma.

(iii) Theorem 1 in [5] states that for p1, ..., pN ≥ 0,
∑
pi = 1 and m ∈ N we have∑

pi (1− pi)m ≤
N

em
.
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Applying this with (3) gives

Pr {G (X, n, τ, g) > t} ≤ N

e (bnt/ (2τ)c − 1)
+

⌈
nt

2τ

⌉
ατ .
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