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Abstract. We give a probabilistic lower bound on the distance from a
�xed point to the span of a small iid sample of a bounded random vector
with values in a Hilbert space. The bound is expressed in terms of the
eigenvalues of the covariance operator associated with the random vector.
Applied to linear regression with square loss it leads to nonparametric,
small sample size lower error bounds for kernel algorithms.

1 Introduction

Let X =(X1; :::; Xm) be a sequence of iid random variables with values in a
Hilbert space H. With [X] we denote the linear span of the Xi, so that [X] is
a random subspace. Given a vector u 2 H we are interested in lower bounds on
the random variable

d (u; [X]) = min
y2[X]

ku� yk .

Such lower bounds have to depend on some form of high-dimensionality of the
distribution of the random variable X = X1. Apart from a boundedness con-
straint on the random variable kXk2 we will describe this distribution only
through properties of its second order moments, more speci�cally in terms of
the trace kCk1 and the largest eigenvalue kCk1 of the covariance operator C. If
kCk1 is large, but kCk1 is small, then the dimensionality is large. This is illus-
trated when X is concentrated and uniformly distributed on the intersection of
the unit sphere with anN -dimensional subspace inH (we will abbreviate this cir-
cumstance by saying that X is N -spherical). Then kCk1 = 1, but kCk1 = 1=N .
Our main result is the following:

Theorem 1. Let b be such that kXk2 � b a.s. If

4m
�
1� b�1 kCk1

�
+ 16m2b�1 kCk1 < �=2

then with probability at least 1� �

d (u; [X]) � kuk
r
1� 4m kCk1

b�
:
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Substituting the values of the norms when X is N -spherical shows that the
lower bound converges to kuk for every � > 0 as N !1. For �nite N we obtain
the bound

d (u; [X]) � kuk

s
N � 4m��1

N
;

which resembles the lower bound obtained explicitely for the N -spherical case
(see [8]), but the additional conditionm <

p
N�=32 shows that the present result

is considerably weaker, while it is much more general because it only depends on
the sequence of eigenvalues of the covariance operator. We will prove Theorem
1 in Section 3.

Our result can be applied to linear regression with square loss. The vector u
is to be thought of as a target function, while X is the input part of the training
sample for some learning algorithm f . A large class of learning algorithms, among
them all kernel-techniques, have the property that the hypotheses they generate
have to lie in the subspace spanned by the input sample. A lower bound on
the distance from u to [X] then implies a lower bound for the distance from
this hypothesis to the target function and is therefore indicative of a lower error
bound for the algorithm f . The expected square error is in fact equal to the
square of the distance for an appropriately rede�ned inner product. These ideas
are spelled out in Section 4 and lead to the following result:

Theorem 2. If kXk � 1 a.s. and 4m
�
1� kCk22 = kCk1

�
+16m2 kCk1 < �=2,

then for every u 2 H with probability at least 1� �

min
w2[X]

E (hw;Xi � hu;Xi)2

E hu;Xi2
� 1� 4m kCk1 =�.

The E hu;Xi2 in the denominator normalizes the expected error of the trivial
hypothesis w = 0 to 1. Here kCk22 is the sum of the squared eigenvalues of C. IfX
is N -spherical we obtain a lower bound of the normalized error of 1� 4m= (N�)
under the condition that m <

p
N�=32.

Examples of nontrivial lower bounds are not only obtained for theN -spherical
case. For our bounds the only relevant features of N -spherical random variables
are the peak-power constraint kXk2 � 1 and the fact that the (descending)
sequence � (N) of covariance-eigenvalues has the form

�k (N) =

�
1=N if 1 � k � N
0 if N < k

:

Any random variable X with kXk2 � 1 where C has the same sequence of
eigenvalues will lead to the same bound. An example would be the uniform
distribution on the extreme points of the `1-unit ball in RN embedded in H.
It is also not surprising, and in fact easy to show, that nontrivial lower bounds
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follow for any random variable with kXk2 � 1 and a covariance operator whose
sequence of eigenvalues is a su¢ ciently small perturbation of � (N) for su¢ ciently
large N . This point will be discussed further in Section 5.

Bounds on the distances to random subspaces generated by Gaussian or
N -spherical random variables have been studied in [2]. In these special cases
exponential tail bounds can be derived which then allow a simple proof of the
Johnson Lindenstrauss Lemma. In our case only second order information is
available leading to much weaker tail bounds derived from Markov�s inequality.
An essential element of our proof is related to a bound on the condition number of
the sample covariance matrix, a problem analyzed in detail by Edelman [3], but
again for Gaussian variables. Exponential concentration of d (u; [X]) in the N -
spherical case is used in [8] to give small-sample lower error bounds for halfspace
learning from the uniform distribution for any unitarily equivariant algorithm.
Theorem 2 above appears to be the �rst such lower bound valid for a generic
class of distributions and all target funtions.

2 Notation and de�nitions

Throughout this paper H will be a real separable Hilbert space, which may be
�nite of in�nite dimensional. The inner product and norm on H are denoted h�; �i
and k�k. If T is a bounded positive operator with trivial null-space then a new
inner product h�; �iT is de�ned on H by hy; ziT = hTy; zi. The corresponding
norm is denoted k�kT .
For a linear operator T on H we use the following norms

kTk1 = sup
(X

k

hTek; eki : (e) is an orthonormal basis of H
)

kTk2 = sup

8<:
 X

k

kTekk2
!1=2

: (e) is an orthonormal basis of H

9=;
kTk1 = sup fkTxk : x 2 H; kxk � 1g :

If the quantities in the �rst two de�nitions are �nite, then the supremum is
attained and independent of the chosen basis. If T is a positive trace class op-
erator then these norms coincide with the usual `p-norms on the sequences of
eigenvalues of T (see [9] for more details on these norms).
These de�nitions also apply to the Hilbert space Rm instead of H and to

the m �m matrices acting in Rm. We will use the same notation in this case,
the nature of the various arguments should be unambiguous in the respective
context. For m�m matrices the norm k�k2 is often called the Frobenius norm,
for operators on H it is called the Hilbert Schmidt norm.

There is a distinguished random variable X taking values in H. We will
always assume a peak power-constraint, either kXk2 � b a.s. or more speci�cally



4

kXk2 � 1. With X =(X1; :::; Xm) we denote the vector obtained from m iid
copies of X.
With the random variable X we associate an operator C, the covariance

operator, on H, de�ned by

hCy; zi = E hy;Xi hX; zi ;8y; z 2 H.

Observe that the relationship between the random variable X and the covari-
ance operator depends on the inner product, and for di¤erent inner products
we obtain di¤erent covariance operators from the same random variable. If the
inner product is given by a positive operator T , as h�; �iT above, then we denote
the corresponding covariance operator by CT . We have, for any y; z 2 H,

hCT y; ziT = E hy;XiT hX; ziT = E hTy;Xi hX;Tzi = hCTy; Tzi = hCTy; ziT ,

so that CT = CT .
The covariance operator is clearly symmetric and nonnegative de�nite. If (e)

is an orthonormal basis of H then

kCk1 =
X
k

hCek; eki = E hek; Xi hX; eki = E kXk2 ; (1)

so by the peak-power constraint C is trace class. With (�) we denote the sequence
of eigenvalues of C in nonincreasing order �1 � �2 � ::: . If the random variable
X has the form  (!) where  : 
 ! H is some feature map from a probability
space (
;�) toH then the sequence (�) is identical to the sequence of eigenvalues
of the integral operator K on L2 (�) given by

(Kf) (x) =

Z
f (y) h (y) ;  (x)i d� (y) :

See [5] and [10] for details on the interpretation of the covariance operator in
kernel methods.
For i 6= j, since Xi and Xj are independent, we get

E hXi; Xji2 = E hCXj ; Xji � kCk1 E kXk
2
: (2)

The linear subspace spanned by X1; :::; Xm will be denoted by [X]. With
P[X] we denote the orthogonal projection in H onto the subspace [X]. From the
de�nition of d (u; [X]) in the introduction we have

d (u; [X]) =

q
kuk2 �



P[X]u

2; (3)

so a lower bound on d (u; [X]) can be obtained from an upper bound on


P[X]u

2.

With X we associate a random m�m matrix G (X), the empirical Gramian
(or kernel matrix), de�ned by

Gij (X) = hXi; Xji .

To estimate the smallest eigenvalue of G (X) we will use the following theorem
[6, Theorem 4.2.2].
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Theorem 3 (Rayleigh-Ritz). If A is a symmetric real matrix, then the small-
est eigenvalue �min of A satis�es

�min (A) = min
kvk=1

hAv; vi .

3 Proof of Theorem 1

We begin with an explicit representation of P[X] in terms of the inverse Gramian:

Lemma 1. If G (X) is invertible then for y 2 H we have

P[X]y =

mX
i;j=1

hy;XiiG�1ij (X)Xj.

Proof. It is straightforward to verify that the operator T de�ned by the right
hand side above satis�es Ty = y for y 2 [X] and Ty = 0 for y 2 [X]?.

The next lemma is the key to our result and is related to an estimate of the
condition number of G (X) :

Lemma 2. If kXk2 < b a.s. then

Pr
�

G�1 (X)

1 > 2b�1

	
< 4m

�
1� b�1 kCk1

�
+ 16m2b�1 kCk1 :

Proof. Let 	 be the event that some kXik2 is less than (3=4) b. By a union bound
and Markov�s inequality we get

Pr	 = Pr
n
9i : kXik2 < (3=4) b

o
� mPr

n
kXk2 < (3=4) b

o
= mPr

n
b� kXk2 > b=4

o
�
4m
�
b� E kXk2

�
b

= 4m
�
1� b�1 kCk1

�
:

Now we de�ne a random m�m matrix B (X) by

Bij (X) =

�
0 if i = j

hXi; Xji if i 6= j
;

and let � be the event that the Frobenius norm of B (X) is larger than b=4. By
Markov�s inequality and the inequality (2) we get

Pr� = Pr fkB (X)k2 > b=4g = Pr
n
kB (X)k22 > b2=16

o
� 16b�2E

X
i 6=j

hXi; Xji2 � 16b�2m2 kCk1 E kXk
2

� 16b�1m2 kCk1 :
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Then Pr (	 [ �) � 4m
�
1� b�1 kCk1

�
+ 16m2b�1 kCk1. But if neither 	 nor �

happen we can apply the Rayleigh-Ritz theorem to get for the smallest eigenvalue
�min (G (X))

�min (G (X)) = min
kvk=1

hG (X) v; vi

= min
kvk=1

0@ mX
i=1

v2i kXik2 +
X
i 6=j

vivj hXi; Xji

1A
� min

i
kXik2 � kB (X)k2

� (3=4) b� b=4 = b=2;

so that G (X) is invertible and


G�1 (X)

1 � 2b�1.

Lemma 3. Let u 2 H. De�ne a vector v (u;X) 2 Rm by v (u;X)i = hu;Xii.
Then

Pr
n
kv (u;X)k2 � ��1m kCk1 kuk

2
o
� 1� �:

Proof. This is just Markov�s inequality

Pr

(
mX
i=1

hu;Xii2 > t

)
� t�1E

mX
i=1

hu;Xii2 = t�1m hCu; ui

� t�1m kCk1 kuk
2
;

equating the last expression to � and solving for t.

Proof (of Theorem 1). By hypothesis 4m
�
1� b�1 kCk1

�
+ 16m2b�1 kCk1 <

�=2;so by Lemma 2 Pr
�

G�1 (X)

1 > 2=b

	
< �=2. From Lemma 3 we obtain

Pr
n
kv (u;X)k2 � 2��1m kCk1 kuk

2
o
� 1� �=2:

Combining these two results in a union bound we obtain Pr	 � 1� � where 	
is the event

	 =
�

G�1 (X)

1 � 2=b

	
\
n
kv (u;X)k2 � 2��1m kCk1 kuk

2
o
:

But in the event of 	 we can use Lemma 1 to get with probability at least 1� �

P[X]u

2 = 
P[X]u; u�
=

mX
i;j=1

hu;XiiG�1ij (X) hXj ; ui

�


G�1 (X)

1 kv (u;X)k2

� 4b�1��1m kCk1 kuk
2
:

so from equation (3) we get

d (u; [X]) =

q
kuk2 �



P[X]u

2 � kukr1� 4m kCk1
b�

:
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4 Application to linear regression

For this section we assume kXk � 1 a.s. and that C is nonsingular.
We consider the following situation. Along with the vector X = (X1; :::; Xm)

a vector Y = (hu;X1i ; :::; hu;Xmi) 2 Rm is observed. The vector Y depends
on the data X and the target vector u and is supposed to give us a clue on the
target vector. The pair (X;Y) is fed into an algorithm f : Hm�Rm ! H, which
produces a hypothesis w = f (X;Y) 2 H. The performance of this hypothesis
is described by the expected square loss

errX (u;w) = E (hu;Xi � hw;Xi)2 :

The expected square loss on hypothesis w and target u is equal to

errX (u;w) = E hu� w;Xi hX;u� wi = hC (u� w) ; u� wi
= ku� wk2C ;

where the norm k�kC on H has been induced by the new inner product h�; �iC
de�ned by

hw; ziC = hCw; zi :
Suppose now that the algorithm f is unitarily equivariant in the sense that

for every (x;y) 2 Hm � Rm and for every unitary operator V on H we have

f (V x;y) = f ((V x1; :::; V xm) ;y) = V f (x;y) :

This condition is satis�ed in particular by kernel algorithms (see e.g. [1] for an
introduction to kernel techniques). Taking V to be the identity on [x] and minus
the identity on the orthogonal complement [x]? shows at once that unitarily
equivariant algorithms must satisfy f (x;y) 2 [x], for all (x;y) 2 Hm � Rm.
This property is sometimes referred to as a representer theorem. Then for u 2 H
we have

errX (u; f (X;Y)) = ku� f (X;Y)k2C
� min

w2[X]
ku� wk2C = dC (u; [X]) ;

where dC (u; [X]) is just the minimal distance from u to [X] in the metric derived
from the inner product h�; �iC . We can therefore apply our theorem to obtain
a lower error bound for all unitarily equivariant algorithms and for all target
vectors u.

As an almost sure upper bound on kXk2C we can take b = kCk1, because

kXk2C = hCX;Xi � kCk1 kXk
2
= kCk1 , a.s.

As explained in Section 2 the covariance operator CC of X relative to the metric
h:; :iC is given by CC = C2. In particular kCCk1 = kCk21 and kCCk1 = kCk

2
2.

Substitution in Theorem 1 then gives the Theorem 2 stated in the introduction.
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This lower bound is quite di¤erent from the classical lower bounds in statisti-
cal learning theory such as in [4] and [7]. The �rst of these results holds for every
algorithm and a distribution mischievously designed to make the algorithm fail.
The second holds for every algorithm and the more benign N -spherical distribu-
tion, but the target function is designed to make the algorithm fail. More similar
to the present bound is the one in [8] which holds only for unitarily equivariant
algorithms and N -spherical distributions, but it also holds for all target func-
tions. Bounds of this type allow to rigorously reason against the use of unitarily
equivariant algorithms and to argue in favour of multi-task, or transfer learning
algorithms. The present bound is also of this type, but replaces the N -spherical
distribution by the more generic class of distributions whose spectral properties
are su¢ ciently similar to those of an N -spherical distribution.

5 The sequence of eigenvalues

In this section we give some crude estimates to exhibit some simple properties of
the eigenvalue sequence (�) su¢ cient for non-trivial lower bounds. We assume
that kXk2 � 1. a.s.
Let �k be the k-th eigenvalue of C in descending order. For N 2 N we de�ne

a sequence � (N)

�k (N) =

�
1=N if 1 � k � N
0 if N < k

;

so � (N) would be the sequence of eigenvalues of the covariance operator cor-
responding to an N -spherical random variable. If the sequence � is very close
to � (N) in the `1-distance, then it seems very intuitive that we can regard
the underlying distribution as approximately N -dimensional. To make this more
precise we denote

�N = k� (N)� �k1 ;
and give some simple properties of the sequence �N :

Lemma 4. For all N > 4 we have
(i) 1� kCk1 � �N :
(ii) N�1 � �N � kCk1 � N�1 + �N
(iii) if �N < 1=2 then N�1 � �N � kCk22 � N�1 + �N

Proof. (i) 1� kCk1 = k� (N)k1 � k�k1 � k� (N)� �k1 = �N .
(ii)

��kCk1 �N�1�� = jk�k1 � k� (N)k1j � k�� � (N)k1 � k�� � (N)k1 =
�N .
(iii) If N � 4 and �N < 1=2 then 2N�1 + �N < 1, so using Hölder�s inequality
and (ii) we have���kCk22 �N�1

��� = �����X
k

�
�2k � �2k (N)

������ �X
k

j�k + �k (N)j j�k � �k (N)j

� k�+ � (N)k1 k�� � (N)k1 � (k�k1 + k� (N)k1) �N
�
�
2N�1 + �N

�
�N � �N .
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Our �nal result states the lower bounds in terms of the sequence �N . For
nontrivial lower bounds we then require that N�1 + �N � m�2:To obtain a
nontrivial lower bound for regression with unitarily equivariant algorithms we
require in addition that �N � Nm�1:

Theorem 4. Let kXk2 � 1 a.s. � 2 (0; 1) and m � 1, N � 4.
(i) If 40m2

�
N�1 + �N

�
< � then with probability at least 1� �

d (u; [X]) � kuk
r
1� 4m (N

�1 + �N )

�
:

(ii) If 8mN�N +16m2
�
N�1 + �N

�
< �=2 then, with probability at least 1��,

the appropriately scaled expected square loss satis�es

min
w2[X]

E (hu;Xi � hw;Xi)2

E hu;Xi2
� 1�

4m
�
N�1 + �N

�
�

.

Proof. (i) We apply Theorem 1 with b = 1. If 40m2
�
N�1 + �N

�
< � then by

part (i) and (ii) of Lemma 4 we have

4m (1� kCk1) + 16m
2 kCk1 � 4m�N + 16m2

�
N�1 + �N

�
� 20m2

�
N�1 + �N

�
� �=2;

so, again by part (ii), with probability at least 1� �

d (u; [X]) � kuk
r
1� 4m kCk1

�
� kuk

r
1� 4m (N

�1 + �N )

�
:

(ii) We can use Theorem 2 since now kXk = 1 a.s. If 8mN�N+16m2
�
N�1 + �N

�
<

�=2 then �N < 1=2, so we can use all parts of Lemma 4:Then

4m
�
1� kCk22 = kCk1

�
+ 16m2 kCk1

� 4m
�
1� N�1 � �N

N�1 + �N

�
+ 16m2

�
N�1 + �N

�
=
8mN�N
1 +N�N

+ 32m2N�1 < �=2;

so the conclusion follows by Theorem 2.
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