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Abstract

We consider the concentration of the eigenvalues of the Gram matrix
for a sample of iid vectors distributed in the unit ball of a Hilbert space.
The square-root term in the deviation bound is shown to scale with the
largest eigenvalue, the remaining term decaying as n~'. This result is the
consequence of a general concentration inequality.

1 Introduction

Let X = (X3, ..., X,,) be a vector of independent random variables with values in
the unit ball B of some Hilbert space H, G'(X) the Gramian G (X),; = (X;, X;)
and Ay = A\g (X) the k-th eigenvalue of G (X) in descending order, where each
eigenvalue is repeated according to its multiplicity. We will prove the following
concentration property of the random variable \g.

Theorem 1 Fort >0

—¢2
Pr{\g— EXg >t} < S
r{Aa = BAa > }_eXp<16E/\maX+6t)

and

—¢2
Pr{EN; — X\ t} < .
r{BAa = Aa > 1} < exp <16EAmax n 4t)

Since X is distributed in the unit ball, the trace of G (X) can be at most n,
but Amax can be much smaller, so the above bound can be considerably better
than what we get if the bounded difference inequality (see [4]) is applied to the
eigenvalues of the Gramian (see [5]).

Let C (X) be the random operator on H defined by

<C’ (X) v, z> = ;Zn: (y, Xi) (Xi, 2) .

C describes the inertial moments of the empirical distribution (1/n) Yo 0x,
about the origin. The nonzero eigenvalues p, of C satisfy p; = Ag/n. Our result



can be converted into a purely empirical bound on the p,; as in the following
corollary:

Corollary 2 Let § € (0,1). Then
1 In2 12In2
Pr{ud_EudS [160ma 2/5 1210 /6}21_5
n n

160 02/0 101n2/6} C1ls
n n

and

Pr {E/J'd — Mg =

The proof of Theorem 1 relies on a general concentration result, which may
be of independent interest. To state it we have to introduce some notation.

Suppose that © = ]} €; is some product space. If x € Q, k € {1,...,n}
and y € ) we write x, ;. for the vector obtained from x by replacing the k-
th component with y. Also, if F : @ — R is bounded, we define a function
Ap:Q — R by

2
A = F — inf F )
P00 =3 (00— jaf F o))
If X is a random vector distributed in 2 we write EF for the expectation of the
random variable F' (X).

Theorem 3 Let X = (X1, ..., X},) be a vector of independent random variables
with values in spaces Qq,...,Qp, Z = Z(x) and W = W (x) real functions on
Q=TI % and a > 1 such that

(i1)0<Z<W
(ZZ) AZ SCLW
(iti) Aw < aW
Then
—¢2
Pr{Z - EZ >t} <exp <4aEW—|—3at/2> .

and, if in addition Z (x) — Z (xy1) < 1, for all k, y € Q4 then

—¢2
Pr{EZ-Z>t)<exp(—n ).
a >t < exp <4aEW+at>

The purely empirical bound of Corollary 2 is also valid in the more general
setting of Theorem 3.

Corollary 4 Under the conditions of Theorem 8, if W (x) — W (xy 1) < 1 for
all k,y € Q, we have for 6 € (0,1):

Pr {Z _BZ > \/1aWn2/5 + 3aln2/(5} <6,

and, if in addition Z (x) — Z (xyr) < 1 for all k,y € Qy, then

Pr {EZ—Z > /4aW1n2/6 + Zaan/é} < 6.



2 Proofs

We first introduce some additional notation and state some useful auxiliary
results. Then we prove Theorem 3 and Corollary 4, and finally we apply these
results to the concentration of eigenvalues.

Let Z be a bounded random variable, 5 € R\ {0}. The Helmholtz energy is
the real number

szy:%mEﬁ?

By I’'Hospital’s rule the function Hz is continuously extended to R by defining
Hz (0) = EZ. The thermal expectation at inverse temperature S is defined by

EWeP%
EpzW = EebZ
We will also make repeated use of the real function g defined by
Cf (eTt+t=1)/t2 for t#£0
“ﬂ_{ 1/2 for t=0 " )

The function g is positive, nonincreasing, and for t < 0 and a > 0 we have

ag (t) < max{l,a}.

1—atg(t) — 2 2)

The following lemma is proved in [3] (Lemma 11).

Lemma 5 For >0 and any Z : Q@ — R
(1)
B B
InE [eB(Z_E[Z])} < 5/0 Eyz[Az]dy. 3)

(ii) If Z —infy, Z < 1 for all k, then

B
i [22] < g (-p) [ By (Arlin ()

A proof of the following decoupling lemma can be found in [1].
Lemma 6 We have
Esz [f] < B8°H' (8) + mEp [¢/]. (5)
We also need two technical optimization inequalities.

Lemma 7 Fort > 0 we have

Be-p) . =t
<
(1-p)> ~ 8+3t

—Bt +

inf
BE0,1)



Proof. Consider the polynomial
p(s) =3s% —3s— s>+ 1.

Then p (1) =0, p’' (1) =0 and p” (s) <0 for all s > 1. It follows that p(s) <0
for all s > 1. Now define

Fe-p . &
a-p? TTsva

It suffices to show that infzc(g 1) h (8,t) <0 for all £ > 0. Write s = /1 +1/2,
so that s > 1. Then

h(B,t) =

. . 27 71 27
RGO = f R(32(s lngho Las 10

2 —
- s((l T 31)2)p(s) =0

Lemma 8 Let C' and b denote two positive real numbers, t > 0. Then

] 0/82 —t2
— < .
ﬁefﬁ/b) ( pt+ 1— bﬂ) ~ 2(2C +bt) (6)

The proof of this result can be found in [3] (Lemma 12).

Proof of Theorem 3. We first claim that for § € (0,2/a)

BEW

lnE[eBW] éil—a,@/? (7)

a fact, which we will need for both tailbounds. Using (3) and assumption (iii)
we have for 5 > 0 that

6
InE [emW—E[W])} < af/o Ew [W]dy = %lnEegw,

where the last identity follows from the fact that E,w [W] = (d/dvy)In Ee?W.
Thus 3

nE [¢#V] < % In EePW + BEW,

and rearranging this inequality for 5 € (0,2/a) establishes the claim.



Now we prove the upwards deviation bound. For 8 € (0,2/a) by Lemma 6
for any random variable W,

e} B
/OEWZ[W]dfy < /OVQH’(V)d7+BlnE[€W]

B

= ﬂlnE[eﬁZ]—2/ InE ["?]dy+BInE [eV] (*)
0

< ﬂlnE[eﬁZ]—i—ﬁlnE[eW} (**)

— BInE {eﬂZ—E[Zl} +B°E[Z)+ B E [¢V].

In (*) we used integration by parts and in (**) the fact that In E [¢7?] > 0
if v > 0, since Z > 0. So, replacing W by SW we get by Lemma 5 (ii) and
AZ S aW

Z-E|Z a [’
1nE[e/3 - [1] < 5/ Bz [BW]dy
0
af - ap? ap
< % pz-Elz]] | @B~ ap BW
< ChEe | +%5-El21+ S mE ]

Substitution of (7) and subtracting (a3/2) In E [e#4~ElZ]] gives

_ a8 ~B(2) af? a fE[W]
<1 2>1nE{eBZ EZ} < 2E[Z]+21—aﬁ/2

QCL 1
—-EWlll4+ —-—
#eE (14 1573 )
where we used EZ < EW for the second inequality. Dividing 1 — af3/2 we

obtain
B*(2-aB/2)
(1-aB/2)*

IN

InFE [eﬁZ*E[Z]} < —E[W]

a
2

Now we make use of Lemma 7

. a B*(2—aB/2) _
ﬁe[lor,lg/a) 2 W] (1- aﬁ/2)2 &
2 o |2e=8 ¢
= JEW ﬁe[Of,l) [ (1-p)? P (E[W])]

—¢2

< .
~ 4aE[W]+ 3at/2

Conclude with Markov’s inequality.
To prove the lower tailbound let again 8 € (0,2/a). Using Lemma 5 (ii) and
Az < aW we get

B

B
in BX P20 < g (-9) [ Bz Az)dy Sag(-6) [ Bz pWdy. (8)
0 0



Since Z is nonnegative, In Ee~7Z is nonincreasing and foﬁ In Ee"?dy > B1In Ee P%.
From integration by parts we therefore find that

B B
/ Y2H' (=) dy = fln Ee % — 2/ In Ee "?dy < —fIn Be PZ,
0 0

By the decoupling lemma 6 it follows that
B B
/ E_.7[BW]dy < / (v*H' (=) + m Be’") dy < —BIn Ee #Z+31In BV
0 0

Resubstitution of this result in (8) gives

In EeP(FZ-2) < ag(—ﬁ)(—ﬁlnEeiﬁZ—i—ﬂlnEeBW)

= —afg(-B)InEFZ=2) 4 qg(-p) (BPEZ + BIn EW) .

Now add afg(—3)In Ee#(FZ=%) to both sides, factor out In Ee®(FZ=%) and
rearrange to get

B(EZ—-Z) ag (=p)
o be =7 +aBg (—P)

where we used (2). But for 8 € (0,2/a) we can substitute inequality (7) and
use assumption (i) to get

(B°EZ + I BV < g (B°EZ + BIn EV) |

_ a B2E W] aE[W] (28% —aB?/2
mecs < g (e =) <50 ()
/32

Now Lemma 8 gives us

. B? —t?

f (—-pt+aE[W < .
ﬁeléfz/a< Bt+aBWIT—5m ) < LEW+
Conclude with Markovs inequality. m

Proof of Corollary 4. Equating the two deviation probabilities in Theorem
3 to /2 gives

Pr{ZEZ>2\/EW aln2/5+3a122/5} <6/2, 9)
and, if Z (x) — Z (xy,x) for all k,y € Qy, then

Pr {EZ — Z > 2VEW+/aln2/5 + aln2/6} <6/2. (10)



Theorem 13, 2nd conclusion in [3] shows that under the conditions of the corol-

lary also
Pr{EW —W > /2aEWI2/5} < 6/2,

from which we derive

Pr{\/ﬁ> VIV + \/2aln2/§} < 4/2.

If we use a union bound to substitute this inequality in (9) and (10) and observe
that v/2 < 3/2, we obtain the conclusions. m

To prove Theorem 1 and Corollary 2 we use the following technical result
on the eigenvalues of the Gramian:

Proposition 9 Let B be the unit ball in some separable real Hilbert-space. For
x € B" define A\g(x) to be the d-th eigenvalue (in descending order) of the
Gramian (x;,x;). Then Vx € B", k € {1,...,n} we have

Aa (x) — ;EFB Ad (Xy.6) <2 and Ay, (x) < 4hpax (%)

Proof. Fix x € B" and some integer k € {1,...,n}. We first claim that

;gﬂ Ad (Xyk) = Aa (Xo,k) -
The L.h.s. is clearly less than or equal the r.h.s. so we just have to show the

reverse inequality. It is easily verified that A4 (x) is also the d-th eigenvalue of
the finite-rank operator T'(x) € L (H) defined by

n

T(x)sz(v,mQxi forve H.

i=1

Now let y € B be arbitrary and let @, be the operator Q,v = (v,y)y. Then
T (xy) =T (x0,6) + Qy-

By Weyls monotonicity theorem (Corollary 4.3.3 in [2]) the d-th eigenvalue
of T (xo,5) can only increase by adding the positive operator @),. Since the
eigenvalues of T" (x) are the same as those of G (x) we have A\g (x0.) < Ag (Xy.1)s
which proves the claim.

Now let V' be the span of the d dominant eigenvectors vy, ...,vq4 of G (x),
and let W be the span of the d — 1 dominant eigenvectors of G (x¢,5). Then
dim W+ +dimV =n+1,so W+ NV # {0} and we can choose a unit vector
uw € WENV. We now use the variational characterization of the eigenvalues
(Theorem 4.2.11 in [2]): Since u € V' we have A\ (x) < (G (x)u,u), and since



u € W we have (G (xox)u,u) < Ag(x0x). Thus, using the definition of the
Gramian, polarization and Cauchy-Schwarz,

Ad (%) = A (xy6) < (G (%) = G (x0,)) us u)

< ug (zx — 0)]] Zui (»Tz + (Xo,k)i)

< Iuk<‘zule + Zui(xO,k)i>

= Junl (G () w ) + (G (o) ww)' /)
< 2fup (G (%) u,u)? < 2fug A2

The first conclusion follows from taking the infimum over y € B. The second
conclusion is obtained by squaring and summing over k. m

Proof of Theorem 1 and Corollary 2. Set Z = A\g(X) /2, W = Apax (X) /2.
Clearly 0 < Z < W. By the previous proposition Z (x) — inf, Z (x,x) < 1,
Az < Apax = 2W and Ay < 2W, so that Theorem 3 and Corollary 4 can be
applied with a = 2. Theorem 1 and Corollary 2 follow. m
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