Concentration properties of the eigenvalues of the Gram matrix

Andreas Maurer

May 14, 2009

Abstract

We consider the concentration of the eigenvalues of the Gram matrix for a sample of iid vectors distributed in the unit ball of a Hilbert space. The square-root term in the deviation bound is shown to scale with the largest eigenvalue, the remaining term decaying as n^{-1} . This result is the consequence of a general concentration inequality.

1 Introduction

Let $\mathbf{X} = (X_1, ..., X_n)$ be a vector of independent random variables with values in the unit ball \mathbb{B} of some Hilbert space H, $G(\mathbf{X})$ the Gramian $G(\mathbf{X})_{ij} = \langle X_i, X_j \rangle$ and $\lambda_d = \lambda_d(\mathbf{X})$ the k-th eigenvalue of $G(\mathbf{X})$ in descending order, where each eigenvalue is repeated according to its multiplicity. We will prove the following concentration property of the random variable λ_d .

Theorem 1 For t > 0

$$\Pr\left\{\lambda_d - E\lambda_d > t\right\} \le \exp\left(\frac{-t^2}{16E\lambda_{\max} + 6t}\right)$$

and

$$\Pr\left\{E\lambda_d - \lambda_d > t\right\} \le \exp\left(\frac{-t^2}{16E\lambda_{\max} + 4t}\right)$$

Since X is distributed in the unit ball, the trace of $G(\mathbf{X})$ can be at most n, but λ_{\max} can be much smaller, so the above bound can be considerably better than what we get if the bounded difference inequality (see [4]) is applied to the eigenvalues of the Gramian (see [5]).

Let $\hat{C}(\mathbf{X})$ be the random operator on H defined by

$$\left\langle \hat{C}\left(\mathbf{X}\right)y,z\right\rangle =\frac{1}{n}\sum_{i=1}^{n}\left\langle y,X_{i}\right\rangle \left\langle X_{i},z\right\rangle .$$

 \hat{C} describes the inertial moments of the empirical distribution $(1/n)\sum_{i=1}^{n} \delta_{X_i}$ about the origin. The nonzero eigenvalues μ_d of \hat{C} satisfy $\mu_d = \lambda_d/n$. Our result

can be converted into a purely empirical bound on the μ_d as in the following corollary:

Corollary 2 Let $\delta \in (0,1)$. Then

$$\Pr\left\{\mu_d - E\mu_d \leq \sqrt{\frac{16\mu_{\max}\ln 2/\delta}{n}} + \frac{12\ln 2/\delta}{n}\right\} \geq 1 - \delta$$

and

$$\Pr\left\{E\mu_d - \mu_d \leq \sqrt{\frac{16\lambda_{\max}\ln 2/\delta}{n}} + \frac{10\ln 2/\delta}{n}\right\} \geq 1 - \delta.$$

The proof of Theorem 1 relies on a general concentration result, which may be of independent interest. To state it we have to introduce some notation.

Suppose that $\Omega = \prod_{1}^{n} \Omega_{i}$ is some product space. If $\mathbf{x} \in \Omega$, $k \in \{1, ..., n\}$ and $y \in \Omega_{k}$ we write $\mathbf{x}_{y,k}$ for the vector obtained from \mathbf{x} by replacing the k-th component with y. Also, if $F : \Omega \to \mathbb{R}$ is bounded, we define a function $\Delta_{F} : \Omega \to \mathbb{R}$ by

$$\Delta_{F}(\mathbf{x}) = \sum_{t} \left(F(\mathbf{x}) - \inf_{y \in \Omega_{k}} F(\mathbf{x}_{y,k}) \right)^{2}.$$

If **X** is a random vector distributed in Ω we write EF for the expectation of the random variable $F(\mathbf{X})$.

Theorem 3 Let $\mathbf{X} = (X_1, ..., X_n)$ be a vector of independent random variables with values in spaces $\Omega_1, ..., \Omega_n, Z = Z(\mathbf{x})$ and $W = W(\mathbf{x})$ real functions on $\Omega = \prod_{1}^{n} \Omega_i$ and $a \geq 1$ such that

- (i) $0 \le Z \le W$
- (ii) $\Delta_Z \leq aW$
- (iii) $\Delta_W \leq aW$

Then

$$\Pr\left\{Z - EZ > t\right\} \le \exp\left(\frac{-t^2}{4aEW + 3at/2}\right).$$

and, if in addition $Z(\mathbf{x}) - Z(\mathbf{x}_{y,k}) \leq 1$, for all $k, y \in \Omega_k$, then

$$\Pr\left\{EZ - Z > t\right\} \le \exp\left(\frac{-t^2}{4aEW + at}\right).$$

The purely empirical bound of Corollary 2 is also valid in the more general setting of Theorem 3.

Corollary 4 Under the conditions of Theorem 3, if $W(\mathbf{x}) - W(\mathbf{x}_{y,k}) \leq 1$ for all $k, y \in \Omega_k$, we have for $\delta \in (0,1)$:

$$\Pr\left\{Z - EZ > \sqrt{4aW \ln 2/\delta} + 3a \ln 2/\delta\right\} < \delta,$$

and, if in addition $Z(\mathbf{x}) - Z(\mathbf{x}_{y,k}) \leq 1$ for all $k, y \in \Omega_k$, then

$$\Pr\left\{EZ - Z > \sqrt{4aW\ln 2/\delta} + \frac{5}{2}a\ln 2/\delta\right\} < \delta.$$

2 Proofs

We first introduce some additional notation and state some useful auxiliary results. Then we prove Theorem 3 and Corollary 4, and finally we apply these results to the concentration of eigenvalues.

Let Z be a bounded random variable, $\beta \in \mathbb{R} \setminus \{0\}$. The Helmholtz energy is the real number

$$H_Z(\beta) = \frac{1}{\beta} \ln E e^{\beta Z}.$$

By l'Hospital's rule the function H_Z is continuously extended to \mathbb{R} by defining $H_Z(0) = EZ$. The thermal expectation at inverse temperature β is defined by

$$E_{\beta Z}W = \frac{EWe^{\beta Z}}{Ee^{\beta Z}}.$$

We will also make repeated use of the real function g defined by

$$g(t) = \begin{cases} (e^{-t} + t - 1)/t^2 & \text{for } t \neq 0\\ 1/2 & \text{for } t = 0 \end{cases}$$
 (1)

The function g is positive, nonincreasing, and for $t \leq 0$ and a > 0 we have

$$\frac{ag(t)}{1 - atg(t)} \le \frac{\max\{1, a\}}{2}.$$
 (2)

The following lemma is proved in [3] (Lemma 11).

Lemma 5 For $\beta > 0$ and any $Z: \Omega \to \mathbb{R}$

(i)

$$\ln E\left[e^{\beta(Z-E[Z])}\right] \le \frac{\beta}{2} \int_0^\beta E_{\gamma Z}\left[\Delta_Z\right] d\gamma. \tag{3}$$

(ii) If $Z - \inf_k Z \leq 1$ for all k, then

$$\ln E\left[e^{\beta(EZ-Z)}\right] \le \beta g\left(-\beta\right) \int_0^\beta E_{-\gamma Z}\left[\Delta_Z\right] d\gamma. \tag{4}$$

A proof of the following decoupling lemma can be found in [1].

Lemma 6 We have

$$E_{\beta Z}[f] \le \beta^2 H'(\beta) + \ln E_P[e^f]. \tag{5}$$

We also need two technical optimization inequalities.

Lemma 7 For $t \ge 0$ we have

$$\inf_{\beta \in [0,1)} -\beta t + \frac{\beta^2 (2-\beta)}{(1-\beta)^2} \le \frac{-t^2}{8+3t}$$

Proof. Consider the polynomial

$$p(s) = 3s^2 - 3s - s^3 + 1.$$

Then p(1) = 0, p'(1) = 0 and $p''(s) \le 0$ for all $s \ge 1$. It follows that $p(s) \le 0$ for all $s \ge 1$. Now define

$$h(\beta, t) = \frac{\beta^2 (2 - \beta)}{(1 - \beta)^2} - \beta t + \frac{t^2}{8 + 3t}.$$

It suffices to show that $\inf_{\beta \in [0,1)} h(\beta,t) \leq 0$ for all $t \geq 0$. Write $s = \sqrt{1 + t/2}$, so that $s \geq 1$. Then

$$\begin{split} \inf_{\beta \in [0,1)} h\left(\beta,t\right) &= \inf_{\beta \in [0,1)} h\left(\beta,2\left(s^2-1\right)\right) \leq h\left(1-\frac{1}{s},2\left(s^2-1\right)\right) \\ &= \frac{\left(s^2-1\right)}{s\left(1+3s^2\right)} p\left(s\right) \leq 0. \end{split}$$

Lemma 8 Let C and b denote two positive real numbers, t > 0. Then

$$\inf_{\beta \in [0,1/b)} \left(-\beta t + \frac{C\beta^2}{1 - b\beta} \right) \le \frac{-t^2}{2(2C + bt)}.$$
 (6)

The proof of this result can be found in [3] (Lemma 12).

Proof of Theorem 3. We first claim that for $\beta \in (0, 2/a)$

$$\ln E\left[e^{\beta W}\right] \le \frac{\beta EW}{1 - a\beta/2},\tag{7}$$

a fact, which we will need for both tail bounds. Using (3) and assumption (iii) we have for $\beta>0$ that

$$\ln E\left[e^{\beta(W-E[W])}\right] \leq \frac{a\beta}{2} \int_0^\beta E_{\gamma W}\left[W\right] d\gamma = \frac{a\beta}{2} \ln E e^{\beta W},$$

where the last identity follows from the fact that $E_{\gamma W}\left[W\right]=(d/d\gamma)\ln Ee^{\gamma W}.$ Thus

$$\ln E\left[e^{\beta W}\right] \le \frac{a\beta}{2} \ln E e^{\beta W} + \beta E W,$$

and rearranging this inequality for $\beta \in (0, 2/a)$ establishes the claim.

Now we prove the upwards deviation bound. For $\beta \in (0, 2/a)$ by Lemma 6 for any random variable W,

$$\begin{split} \int_0^\beta E_{\gamma Z} \left[W \right] d\gamma & \leq & \int_0^\beta \gamma^2 H' \left(\gamma \right) d\gamma + \beta \ln E \left[e^W \right] \\ & = & \beta \ln E \left[e^{\beta Z} \right] - 2 \int_0^\beta \ln E \left[e^{\gamma Z} \right] d\gamma + \beta \ln E \left[e^W \right] \ (*) \\ & \leq & \beta \ln E \left[e^{\beta Z} \right] + \beta \ln E \left[e^W \right] \ (**) \\ & = & \beta \ln E \left[e^{\beta Z - E[Z]} \right] + \beta^2 E \left[Z \right] + \beta \ln E \left[e^W \right] \,. \end{split}$$

In (*) we used integration by parts and in (**) the fact that $\ln E\left[e^{\gamma Z}\right] \geq 0$ if $\gamma \geq 0$, since $Z \geq 0$. So, replacing W by βW we get by Lemma 5 (ii) and $\Delta_Z \leq aW$

$$\begin{split} \ln E \left[e^{\beta Z - E[Z]} \right] & \leq & \frac{a}{2} \int_0^\beta E_{\gamma Z} \left[\beta W \right] d\gamma \\ & \leq & \frac{a\beta}{2} \ln E \left[e^{\beta Z - E[Z]} \right] + \frac{a\beta^2}{2} E \left[Z \right] + \frac{a\beta}{2} \ln E \left[e^{\beta W} \right] . \end{split}$$

Substitution of (7) and subtracting $(a\beta/2) \ln E \left[e^{\beta Z - E[Z]} \right]$ gives

$$\left(1 - \frac{a\beta}{2}\right) \ln E\left[e^{\beta Z - E[Z]}\right] \leq \frac{a\beta^2}{2} E\left[Z\right] + \frac{a}{2} \frac{\beta^2 E\left[W\right]}{1 - a\beta/2}
\leq \beta^2 \frac{a}{2} E\left[W\right] \left(1 + \frac{1}{1 - a\beta/2}\right),$$

where we used $EZ \leq EW$ for the second inequality. Dividing $1 - a\beta/2$ we obtain

$$\ln E\left[e^{\beta Z - E[Z]}\right] \le \frac{a}{2} E\left[W\right] \frac{\beta^2 \left(2 - a\beta/2\right)}{\left(1 - a\beta/2\right)^2}.$$

Now we make use of Lemma 7

$$\inf_{\beta \in [0,2/a)} \frac{a}{2} E[W] \frac{\beta^2 (2 - a\beta/2)}{(1 - a\beta/2)^2} - \beta t$$

$$= \frac{2}{a} E[W] \inf_{\beta \in [0,1)} \left[\frac{\beta^2 (2 - \beta)}{(1 - \beta)^2} - \beta \left(\frac{t}{E[W]} \right) \right]$$

$$\leq \frac{-t^2}{4a E[W] + 3at/2}.$$

Conclude with Markov's inequality.

To prove the lower tailbound let again $\beta \in (0,2/a)$. Using Lemma 5 (ii) and $\Delta_Z \leq aW$ we get

$$\ln E e^{\beta(EZ-Z)} \le \beta g(-\beta) \int_0^\beta E_{-\gamma Z} [\Delta_Z] d\gamma \le a g(-\beta) \int_0^\beta E_{-\gamma Z} [\beta W] d\gamma. \quad (8)$$

Since Z is nonnegative, $\ln E e^{-\gamma Z}$ is nonincreasing and $\int_0^\beta \ln E e^{-\gamma Z} d\gamma \ge \beta \ln E e^{-\beta Z}$. From integration by parts we therefore find that

$$\int_0^\beta \gamma^2 H'\left(-\gamma\right) d\gamma = \beta \ln E e^{-\beta Z} - 2 \int_0^\beta \ln E e^{-\gamma Z} d\gamma \le -\beta \ln E e^{-\beta Z},$$

By the decoupling lemma 6 it follows that

$$\int_{0}^{\beta} E_{-\gamma Z} \left[\beta W\right] d\gamma \leq \int_{0}^{\beta} \left(\gamma^{2} H'\left(-\gamma\right) + \ln E e^{\beta W}\right) d\gamma \leq -\beta \ln E e^{-\beta Z} + \beta \ln E e^{\beta W}.$$

Resubstitution of this result in (8) gives

$$\ln E e^{\beta(EZ-Z)} \leq ag(-\beta) \left(-\beta \ln E e^{-\beta Z} + \beta \ln E e^{\beta W}\right)$$
$$= -a\beta g(-\beta) \ln E e^{\beta(EZ-Z)} + ag(-\beta) \left(\beta^2 E Z + \beta \ln E e^{\beta W}\right).$$

Now add $a\beta g(-\beta) \ln E e^{\beta(EZ-Z)}$ to both sides, factor out $\ln E e^{\beta(EZ-Z)}$ and rearrange to get

$$\ln E e^{\beta(EZ-Z)} \le \frac{ag(-\beta)}{1 + a\beta g(-\beta)} \left(\beta^2 EZ + \beta \ln E e^{\beta W}\right) \le \frac{a}{2} \left(\beta^2 EZ + \beta \ln E e^{\beta W}\right)$$

where we used (2). But for $\beta \in (0, 2/a)$ we can substitute inequality (7) and use assumption (i) to get

$$\ln E e^{\beta(EZ-Z)} \leq \frac{a}{2} \left(\beta^2 E Z + \frac{\beta^2 E[W]}{1 - a\beta/2} \right) \leq \frac{aE[W]}{2} \left(\frac{2\beta^2 - a\beta^3/2}{1 - a\beta/2} \right)$$
$$\leq aE[W] \frac{\beta^2}{1 - a\beta/2}.$$

Now Lemma 8 gives us

$$\inf_{\beta \in 0, 2/a} \left(-\beta t + aE\left[W\right] \frac{\beta^2}{1 - a\beta/2} \right) \le \frac{-t^2}{4aE\left[W\right] + at}.$$

Conclude with Markovs inequality.

Proof of Corollary 4. Equating the two deviation probabilities in Theorem 3 to $\delta/2$ gives

$$\Pr\left\{Z - EZ > 2\sqrt{EW}\sqrt{a\ln 2/\delta} + \frac{3a\ln 2/\delta}{2}\right\} < \delta/2,\tag{9}$$

and, if $Z(\mathbf{x}) - Z(\mathbf{x}_{y,k})$ for all $k, y \in \Omega_k$, then

$$\Pr\left\{EZ - Z > 2\sqrt{EW}\sqrt{a\ln 2/\delta} + a\ln 2/\delta\right\} < \delta/2. \tag{10}$$

Theorem 13, 2nd conclusion in [3] shows that under the conditions of the corollary also

$$\Pr\left\{EW - W > \sqrt{2aEW\ln 2/\delta}\right\} < \delta/2,$$

from which we derive

$$\Pr\left\{\sqrt{EW} > \sqrt{W} + \sqrt{2a\ln 2/\delta}\right\} < \delta/2.$$

If we use a union bound to substitute this inequality in (9) and (10) and observe that $\sqrt{2} < 3/2$, we obtain the conclusions.

To prove Theorem 1 and Corollary 2 we use the following technical result on the eigenvalues of the Gramian:

Proposition 9 Let \mathbb{B} be the unit ball in some separable real Hilbert-space. For $\mathbf{x} \in \mathbb{B}^n$ define $\lambda_d(\mathbf{x})$ to be the d-th eigenvalue (in descending order) of the Gramian $\langle x_i, x_j \rangle$. Then $\forall \mathbf{x} \in \mathbb{B}^n$, $k \in \{1, ..., n\}$ we have

$$\lambda_d(\mathbf{x}) - \inf_{y \in \mathbb{R}} \lambda_d(\mathbf{x}_{y,k}) \le 2 \text{ and } \Delta_{\lambda_d}(\mathbf{x}) \le 4\lambda_{\max}(\mathbf{x}).$$

Proof. Fix $\mathbf{x} \in \mathbb{B}^n$ and some integer $k \in \{1, ..., n\}$. We first claim that

$$\inf_{y \in \mathbb{B}} \lambda_d \left(\mathbf{x}_{y,k} \right) = \lambda_d \left(\mathbf{x}_{0,k} \right).$$

The l.h.s. is clearly less than or equal the r.h.s. so we just have to show the reverse inequality. It is easily verified that $\lambda_d(\mathbf{x})$ is also the d-th eigenvalue of the finite-rank operator $T(\mathbf{x}) \in L(H)$ defined by

$$T(\mathbf{x}) v = \sum_{i=1}^{n} \langle v, x_i \rangle x_i \text{ for } v \in H.$$

Now let $y \in \mathbb{B}$ be arbitrary and let Q_y be the operator $Q_y v = \langle v, y \rangle y$. Then

$$T\left(\mathbf{x}_{u,k}\right) = T\left(\mathbf{x}_{0,k}\right) + Q_{u}.$$

By Weyls monotonicity theorem (Corollary 4.3.3 in [2]) the d-th eigenvalue of $T(\mathbf{x}_{0,k})$ can only increase by adding the positive operator Q_y . Since the eigenvalues of $T(\mathbf{x})$ are the same as those of $G(\mathbf{x})$ we have $\lambda_d(\mathbf{x}_{0,k}) \leq \lambda_d(\mathbf{x}_{y,k})$, which proves the claim.

Now let V be the span of the d dominant eigenvectors $v_1, ..., v_d$ of $G(\mathbf{x})$, and let W be the span of the d-1 dominant eigenvectors of $G(\mathbf{x}_{0,k})$. Then $\dim W^{\perp} + \dim V = n+1$, so $W^{\perp} \cap V \neq \{0\}$ and we can choose a unit vector $u \in W^{\perp} \cap V$. We now use the variational characterization of the eigenvalues (Theorem 4.2.11 in [2]): Since $u \in V$ we have $\lambda_d(\mathbf{x}) \leq \langle G(\mathbf{x}) u, u \rangle$, and since

 $u \in W^{\perp}$ we have $\langle G(\mathbf{x}_{0,k}) u, u \rangle \leq \lambda_d(\mathbf{x}_{0,k})$. Thus, using the definition of the Gramian, polarization and Cauchy-Schwarz,

$$\lambda_{d}(\mathbf{x}) - \lambda_{d}(\mathbf{x}_{y,k}) \leq \langle (G(\mathbf{x}) - G(\mathbf{x}_{0,k})) u, u \rangle$$

$$\leq \|u_{k}(x_{k} - 0)\| \left\| \sum_{i} u_{i} \left(x_{i} + (\mathbf{x}_{0,k})_{i} \right) \right\|$$

$$\leq \|u_{k}\| \left(\left\| \sum_{i} u_{i} x_{i} \right\| + \left\| \sum_{i} u_{i} (\mathbf{x}_{0,k})_{i} \right\| \right)$$

$$= \|u_{k}\| \left(\langle G(\mathbf{x}) u, u \rangle^{1/2} + \langle G(\mathbf{x}_{0,k}) u, u \rangle^{1/2} \right)$$

$$\leq 2 \|u_{k}\| \langle G(\mathbf{x}) u, u \rangle^{1/2} \leq 2 \|u_{k}\| \lambda_{\max}^{1/2}.$$

The first conclusion follows from taking the infimum over $y \in \mathbb{B}$. The second conclusion is obtained by squaring and summing over k.

Proof of Theorem 1 and Corollary 2. Set $Z = \lambda_d(\mathbf{X})/2$, $W = \lambda_{\max}(\mathbf{X})/2$. Clearly $0 \le Z \le W$. By the previous proposition $Z(\mathbf{x}) - \inf_y Z(\mathbf{x}_{y,k}) \le 1$, $\Delta_Z \le \lambda_{\max} = 2W$ and $\Delta_W \le 2W$, so that Theorem 3 and Corollary 4 can be applied with a = 2. Theorem 1 and Corollary 2 follow.

References

- [1] S.Boucheron, G.Lugosi, P.Massart, Concentration Inequalities using the entropy method, *Annals of Probability* 31, Nr 3, 2003
- [2] R. A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1985
- [3] A. Maurer. Concentration inequalities for functions of independent variables. Random Structures and Algorithms 29: 121–138, 2006
- [4] C.McDiarmid, "Concentration", in *Probabilistic Methods of Algorithmic Discrete Mathematics*, p. 195-248. Springer, Berlin, 1998.
- [5] J. Shawe-Taylor, C. K. I. Williams, N. Cristianini, J. S. Kandola: On the eigenspectrum of the gram matrix and the generalization error of kernel-PCA. *IEEE Transactions on Information Theory* 51(7): 2510-2522, 2005