Concentration properties of the eigenvalues of the Gram matrix

Andreas Maurer

May 14, 2009

Abstract

We consider the concentration of the eigenvalues of the Gram matrix for a sample of iid vectors distributed in the unit ball of a Hilbert space. The square-root term in the deviation bound is shown to scale with the largest eigenvalue, the remaining term decaying as n^{-1}. This result is the consequence of a general concentration inequality.

1 Introduction

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a vector of independent random variables with values in the unit ball \mathbb{B} of some Hilbert space $H, G(\mathbf{X})$ the Gramian $G(\mathbf{X})_{i j}=\left\langle X_{i}, X_{j}\right\rangle$ and $\lambda_{d}=\lambda_{d}(\mathbf{X})$ the k-th eigenvalue of $G(\mathbf{X})$ in descending order, where each eigenvalue is repeated according to its multiplicity. We will prove the following concentration property of the random variable λ_{d}.

Theorem 1 For $t>0$

$$
\operatorname{Pr}\left\{\lambda_{d}-E \lambda_{d}>t\right\} \leq \exp \left(\frac{-t^{2}}{16 E \lambda_{\max }+6 t}\right)
$$

and

$$
\operatorname{Pr}\left\{E \lambda_{d}-\lambda_{d}>t\right\} \leq \exp \left(\frac{-t^{2}}{16 E \lambda_{\max }+4 t}\right)
$$

Since X is distributed in the unit ball, the trace of $G(\mathbf{X})$ can be at most n, but $\lambda_{\max }$ can be much smaller, so the above bound can be considerably better than what we get if the bounded difference inequality (see [4]) is applied to the eigenvalues of the Gramian (see [5]).

Let $\hat{C}(\mathbf{X})$ be the random operator on H defined by

$$
\langle\hat{C}(\mathbf{X}) y, z\rangle=\frac{1}{n} \sum_{i=1}^{n}\left\langle y, X_{i}\right\rangle\left\langle X_{i}, z\right\rangle
$$

\hat{C} describes the inertial moments of the empirical distribution $(1 / n) \sum_{i=1}^{n} \delta_{X_{i}}$ about the origin. The nonzero eigenvalues μ_{d} of \hat{C} satisfy $\mu_{d}=\lambda_{d} / n$. Our result
can be converted into a purely empirical bound on the μ_{d} as in the following corollary:

Corollary 2 Let $\delta \in(0,1)$. Then

$$
\operatorname{Pr}\left\{\mu_{d}-E \mu_{d} \leq \sqrt{\frac{16 \mu_{\max } \ln 2 / \delta}{n}}+\frac{12 \ln 2 / \delta}{n}\right\} \geq 1-\delta
$$

and

$$
\operatorname{Pr}\left\{E \mu_{d}-\mu_{d} \leq \sqrt{\frac{16 \lambda_{\max } \ln 2 / \delta}{n}}+\frac{10 \ln 2 / \delta}{n}\right\} \geq 1-\delta .
$$

The proof of Theorem 1 relies on a general concentration result, which may be of independent interest. To state it we have to introduce some notation.

Suppose that $\Omega=\prod_{1}^{n} \Omega_{i}$ is some product space. If $\mathbf{x} \in \Omega, k \in\{1, \ldots, n\}$ and $y \in \Omega_{k}$ we write $\mathbf{x}_{y, k}$ for the vector obtained from \mathbf{x} by replacing the k th component with y. Also, if $F: \Omega \rightarrow \mathbb{R}$ is bounded, we define a function $\Delta_{F}: \Omega \rightarrow \mathbb{R}$ by

$$
\Delta_{F}(\mathbf{x})=\sum_{k}\left(F(\mathbf{x})-\inf _{y \in \Omega_{k}} F\left(\mathbf{x}_{y, k}\right)\right)^{2} .
$$

If \mathbf{X} is a random vector distributed in Ω we write $E F$ for the expectation of the random variable $F(\mathbf{X})$.
Theorem 3 Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a vector of independent random variables with values in spaces $\Omega_{1}, \ldots, \Omega_{n}, Z=Z(\mathbf{x})$ and $W=W(\mathbf{x})$ real functions on $\Omega=\prod_{1}^{n} \Omega_{i}$ and $a \geq 1$ such that
(i) $0 \leq Z \leq W$
(ii) $\Delta_{Z} \leq a W$
(iii) $\Delta_{W} \leq a W$

Then

$$
\operatorname{Pr}\{Z-E Z>t\} \leq \exp \left(\frac{-t^{2}}{4 a E W+3 a t / 2}\right) .
$$

and, if in addition $Z(\mathbf{x})-Z\left(\mathbf{x}_{y, k}\right) \leq 1$, for all $k, y \in \Omega_{k}$, then

$$
\operatorname{Pr}\{E Z-Z>t\} \leq \exp \left(\frac{-t^{2}}{4 a E W+a t}\right) .
$$

The purely empirical bound of Corollary 2 is also valid in the more general setting of Theorem 3.
Corollary 4 Under the conditions of Theorem 3, if $W(\mathbf{x})-W\left(\mathbf{x}_{y, k}\right) \leq 1$ for all $k, y \in \Omega_{k}$, we have for $\delta \in(0,1)$:

$$
\operatorname{Pr}\{Z-E Z>\sqrt{4 a W \ln 2 / \delta}+3 a \ln 2 / \delta\}<\delta,
$$

and, if in addition $Z(\mathbf{x})-Z\left(\mathbf{x}_{y, k}\right) \leq 1$ for all $k, y \in \Omega_{k}$, then

$$
\operatorname{Pr}\left\{E Z-Z>\sqrt{4 a W \ln 2 / \delta}+\frac{5}{2} a \ln 2 / \delta\right\}<\delta .
$$

2 Proofs

We first introduce some additional notation and state some useful auxiliary results. Then we prove Theorem 3 and Corollary 4, and finally we apply these results to the concentration of eigenvalues.

Let Z be a bounded random variable, $\beta \in \mathbb{R} \backslash\{0\}$. The Helmholtz energy is the real number

$$
H_{Z}(\beta)=\frac{1}{\beta} \ln E e^{\beta Z}
$$

By l'Hospital's rule the function H_{Z} is continuously extended to \mathbb{R} by defining $H_{Z}(0)=E Z$. The thermal expectation at inverse temperature β is defined by

$$
E_{\beta Z} W=\frac{E W e^{\beta Z}}{E e^{\beta Z}}
$$

We will also make repeated use of the real function g defined by

$$
g(t)=\left\{\begin{array}{cc}
\left(e^{-t}+t-1\right) / t^{2} & \text { for } \quad t \neq 0 \tag{1}\\
1 / 2 & \text { for } \quad t=0
\end{array}\right.
$$

The function g is positive, nonincreasing, and for $t \leq 0$ and $a>0$ we have

$$
\begin{equation*}
\frac{a g(t)}{1-\operatorname{atg}(t)} \leq \frac{\max \{1, a\}}{2} \tag{2}
\end{equation*}
$$

The following lemma is proved in [3] (Lemma 11).
Lemma 5 For $\beta>0$ and any $Z: \Omega \rightarrow \mathbb{R}$
(i)

$$
\begin{equation*}
\ln E\left[e^{\beta(Z-E[Z])}\right] \leq \frac{\beta}{2} \int_{0}^{\beta} E_{\gamma Z}\left[\Delta_{Z}\right] d \gamma \tag{3}
\end{equation*}
$$

(ii) If $Z-\inf _{k} Z \leq 1$ for all k, then

$$
\begin{equation*}
\ln E\left[e^{\beta(E Z-Z)}\right] \leq \beta g(-\beta) \int_{0}^{\beta} E_{-\gamma Z}\left[\Delta_{Z}\right] d \gamma \tag{4}
\end{equation*}
$$

A proof of the following decoupling lemma can be found in [1].
Lemma 6 We have

$$
\begin{equation*}
E_{\beta Z}[f] \leq \beta^{2} H^{\prime}(\beta)+\ln E_{P}\left[e^{f}\right] \tag{5}
\end{equation*}
$$

We also need two technical optimization inequalities.
Lemma 7 For $t \geq 0$ we have

$$
\inf _{\beta \in[0,1)}-\beta t+\frac{\beta^{2}(2-\beta)}{(1-\beta)^{2}} \leq \frac{-t^{2}}{8+3 t}
$$

Proof. Consider the polynomial

$$
p(s)=3 s^{2}-3 s-s^{3}+1
$$

Then $p(1)=0, p^{\prime}(1)=0$ and $p^{\prime \prime}(s) \leq 0$ for all $s \geq 1$. It follows that $p(s) \leq 0$ for all $s \geq 1$. Now define

$$
h(\beta, t)=\frac{\beta^{2}(2-\beta)}{(1-\beta)^{2}}-\beta t+\frac{t^{2}}{8+3 t} .
$$

It suffices to show that $\inf _{\beta \in[0,1)} h(\beta, t) \leq 0$ for all $t \geq 0$. Write $s=\sqrt{1+t / 2}$, so that $s \geq 1$. Then

$$
\begin{aligned}
\inf _{\beta \in[0,1)} h(\beta, t) & =\inf _{\beta \in[0,1)} h\left(\beta, 2\left(s^{2}-1\right)\right) \leq h\left(1-\frac{1}{s}, 2\left(s^{2}-1\right)\right) \\
& =\frac{\left(s^{2}-1\right)}{s\left(1+3 s^{2}\right)} p(s) \leq 0
\end{aligned}
$$

Lemma 8 Let C and b denote two positive real numbers, $t>0$. Then

$$
\begin{equation*}
\inf _{\beta \in[0,1 / b)}\left(-\beta t+\frac{C \beta^{2}}{1-b \beta}\right) \leq \frac{-t^{2}}{2(2 C+b t)} \tag{6}
\end{equation*}
$$

The proof of this result can be found in [3] (Lemma 12).
Proof of Theorem 3. We first claim that for $\beta \in(0,2 / a)$

$$
\begin{equation*}
\ln E\left[e^{\beta W}\right] \leq \frac{\beta E W}{1-a \beta / 2} \tag{7}
\end{equation*}
$$

a fact, which we will need for both tailbounds. Using (3) and assumption (iii) we have for $\beta>0$ that

$$
\ln E\left[e^{\beta(W-E[W])}\right] \leq \frac{a \beta}{2} \int_{0}^{\beta} E_{\gamma W}[W] d \gamma=\frac{a \beta}{2} \ln E e^{\beta W}
$$

where the last identity follows from the fact that $E_{\gamma W}[W]=(d / d \gamma) \ln E e^{\gamma W}$. Thus

$$
\ln E\left[e^{\beta W}\right] \leq \frac{a \beta}{2} \ln E e^{\beta W}+\beta E W
$$

and rearranging this inequality for $\beta \in(0,2 / a)$ establishes the claim.

Now we prove the upwards deviation bound. For $\beta \in(0,2 / a)$ by Lemma 6 for any random variable W,

$$
\begin{align*}
\int_{0}^{\beta} E_{\gamma Z}[W] d \gamma & \leq \int_{0}^{\beta} \gamma^{2} H^{\prime}(\gamma) d \gamma+\beta \ln E\left[e^{W}\right] \\
& =\beta \ln E\left[e^{\beta Z}\right]-2 \int_{0}^{\beta} \ln E\left[e^{\gamma Z}\right] d \gamma+\beta \ln E\left[e^{W}\right] \tag{*}\\
& \leq \beta \ln E\left[e^{\beta Z}\right]+\beta \ln E\left[e^{W}\right]\left({ }^{* *}\right) \\
& =\beta \ln E\left[e^{\beta Z-E[Z]}\right]+\beta^{2} E[Z]+\beta \ln E\left[e^{W}\right]
\end{align*}
$$

In $\left(^{*}\right)$ we used integration by parts and in (**) the fact that $\ln E\left[e^{\gamma Z}\right] \geq 0$ if $\gamma \geq 0$, since $Z \geq 0$. So, replacing W by βW we get by Lemma 5 (ii) and $\Delta_{Z} \leq a W$

$$
\begin{aligned}
\ln E\left[e^{\beta Z-E[Z]}\right] & \leq \frac{a}{2} \int_{0}^{\beta} E_{\gamma Z}[\beta W] d \gamma \\
& \leq \frac{a \beta}{2} \ln E\left[e^{\beta Z-E[Z]}\right]+\frac{a \beta^{2}}{2} E[Z]+\frac{a \beta}{2} \ln E\left[e^{\beta W}\right]
\end{aligned}
$$

Substitution of (7) and subtracting ($a \beta / 2$) $\ln E\left[e^{\beta Z-E[Z]}\right]$ gives

$$
\begin{aligned}
\left(1-\frac{a \beta}{2}\right) \ln E\left[e^{\beta Z-E[Z]}\right] & \leq \frac{a \beta^{2}}{2} E[Z]+\frac{a}{2} \frac{\beta^{2} E[W]}{1-a \beta / 2} \\
& \leq \beta^{2} \frac{a}{2} E[W]\left(1+\frac{1}{1-a \beta / 2}\right)
\end{aligned}
$$

where we used $E Z \leq E W$ for the second inequality. Dividing $1-a \beta / 2$ we obtain

$$
\ln E\left[e^{\beta Z-E[Z]}\right] \leq \frac{a}{2} E[W] \frac{\beta^{2}(2-a \beta / 2)}{(1-a \beta / 2)^{2}}
$$

Now we make use of Lemma 7

$$
\begin{aligned}
& \inf _{\beta \in[0,2 / a)} \frac{a}{2} E[W] \frac{\beta^{2}(2-a \beta / 2)}{(1-a \beta / 2)^{2}}-\beta t \\
= & \frac{2}{a} E[W] \inf _{\beta \in[0,1)}\left[\frac{\beta^{2}(2-\beta)}{(1-\beta)^{2}}-\beta\left(\frac{t}{E[W]}\right)\right] \\
\leq & \frac{-t^{2}}{4 a E[W]+3 a t / 2}
\end{aligned}
$$

Conclude with Markov's inequality.
To prove the lower tailbound let again $\beta \in(0,2 / a)$. Using Lemma 5 (ii) and $\Delta_{Z} \leq a W$ we get

$$
\begin{equation*}
\ln E e^{\beta(E Z-Z)} \leq \beta g(-\beta) \int_{0}^{\beta} E_{-\gamma Z}\left[\Delta_{Z}\right] d \gamma \leq a g(-\beta) \int_{0}^{\beta} E_{-\gamma Z}[\beta W] d \gamma \tag{8}
\end{equation*}
$$

Since Z is nonnegative, $\ln E e^{-\gamma Z}$ is nonincreasing and $\int_{0}^{\beta} \ln E e^{-\gamma Z} d \gamma \geq \beta \ln E e^{-\beta Z}$. From integration by parts we therefore find that

$$
\int_{0}^{\beta} \gamma^{2} H^{\prime}(-\gamma) d \gamma=\beta \ln E e^{-\beta Z}-2 \int_{0}^{\beta} \ln E e^{-\gamma Z} d \gamma \leq-\beta \ln E e^{-\beta Z}
$$

By the decoupling lemma 6 it follows that

$$
\int_{0}^{\beta} E_{-\gamma Z}[\beta W] d \gamma \leq \int_{0}^{\beta}\left(\gamma^{2} H^{\prime}(-\gamma)+\ln E e^{\beta W}\right) d \gamma \leq-\beta \ln E e^{-\beta Z}+\beta \ln E e^{\beta W}
$$

Resubstitution of this result in (8) gives

$$
\begin{aligned}
\ln E e^{\beta(E Z-Z)} & \leq a g(-\beta)\left(-\beta \ln E e^{-\beta Z}+\beta \ln E e^{\beta W}\right) \\
& =-a \beta g(-\beta) \ln E e^{\beta(E Z-Z)}+a g(-\beta)\left(\beta^{2} E Z+\beta \ln E e^{\beta W}\right)
\end{aligned}
$$

Now add $a \beta g(-\beta) \ln E e^{\beta(E Z-Z)}$ to both sides, factor out $\ln E e^{\beta(E Z-Z)}$ and rearrange to get
$\ln E e^{\beta(E Z-Z)} \leq \frac{a g(-\beta)}{1+a \beta g(-\beta)}\left(\beta^{2} E Z+\beta \ln E e^{\beta W}\right) \leq \frac{a}{2}\left(\beta^{2} E Z+\beta \ln E e^{\beta W}\right)$,
where we used (2). But for $\beta \in(0,2 / a)$ we can substitute inequality (7) and use assumption (i) to get

$$
\begin{aligned}
\ln E e^{\beta(E Z-Z)} & \leq \frac{a}{2}\left(\beta^{2} E Z+\frac{\beta^{2} E[W]}{1-a \beta / 2}\right) \leq \frac{a E[W]}{2}\left(\frac{2 \beta^{2}-a \beta^{3} / 2}{1-a \beta / 2}\right) \\
& \leq a E[W] \frac{\beta^{2}}{1-a \beta / 2}
\end{aligned}
$$

Now Lemma 8 gives us

$$
\inf _{\beta \in 0,2 / a}\left(-\beta t+a E[W] \frac{\beta^{2}}{1-a \beta / 2}\right) \leq \frac{-t^{2}}{4 a E[W]+a t}
$$

Conclude with Markovs inequality.
Proof of Corollary 4. Equating the two deviation probabilities in Theorem 3 to $\delta / 2$ gives

$$
\begin{equation*}
\operatorname{Pr}\left\{Z-E Z>2 \sqrt{E W} \sqrt{a \ln 2 / \delta}+\frac{3 a \ln 2 / \delta}{2}\right\}<\delta / 2 \tag{9}
\end{equation*}
$$

and, if $Z(\mathbf{x})-Z\left(\mathbf{x}_{y, k}\right)$ for all $k, y \in \Omega_{k}$, then

$$
\begin{equation*}
\operatorname{Pr}\{E Z-Z>2 \sqrt{E W} \sqrt{a \ln 2 / \delta}+a \ln 2 / \delta\}<\delta / 2 \tag{10}
\end{equation*}
$$

Theorem 13, 2nd conclusion in [3] shows that under the conditions of the corollary also

$$
\operatorname{Pr}\{E W-W>\sqrt{2 a E W \ln 2 / \delta}\}<\delta / 2
$$

from which we derive

$$
\operatorname{Pr}\{\sqrt{E W}>\sqrt{W}+\sqrt{2 a \ln 2 / \delta}\}<\delta / 2
$$

If we use a union bound to substitute this inequality in (9) and (10) and observe that $\sqrt{2}<3 / 2$, we obtain the conclusions.

To prove Theorem 1 and Corollary 2 we use the following technical result on the eigenvalues of the Gramian:

Proposition 9 Let \mathbb{B} be the unit ball in some separable real Hilbert-space. For $\mathbf{x} \in \mathbb{B}^{n}$ define $\lambda_{d}(\mathbf{x})$ to be the d-th eigenvalue (in descending order) of the Gramian $\left\langle x_{i}, x_{j}\right\rangle$. Then $\forall \mathbf{x} \in \mathbb{B}^{n}, k \in\{1, \ldots, n\}$ we have

$$
\lambda_{d}(\mathbf{x})-\inf _{y \in \mathbb{B}} \lambda_{d}\left(\mathbf{x}_{y, k}\right) \leq 2 \text { and } \Delta_{\lambda_{d}}(\mathbf{x}) \leq 4 \lambda_{\max }(\mathbf{x})
$$

Proof. Fix $\mathbf{x} \in \mathbb{B}^{n}$ and some integer $k \in\{1, \ldots, n\}$. We first claim that

$$
\inf _{y \in \mathbb{B}} \lambda_{d}\left(\mathbf{x}_{y, k}\right)=\lambda_{d}\left(\mathbf{x}_{0, k}\right)
$$

The l.h.s. is clearly less than or equal the r.h.s. so we just have to show the reverse inequality. It is easily verified that $\lambda_{d}(\mathbf{x})$ is also the d-th eigenvalue of the finite-rank operator $T(\mathbf{x}) \in L(H)$ defined by

$$
T(\mathbf{x}) v=\sum_{i=1}^{n}\left\langle v, x_{i}\right\rangle x_{i} \text { for } v \in H
$$

Now let $y \in \mathbb{B}$ be arbitrary and let Q_{y} be the operator $Q_{y} v=\langle v, y\rangle y$. Then

$$
T\left(\mathbf{x}_{y, k}\right)=T\left(\mathbf{x}_{0, k}\right)+Q_{y}
$$

By Weyls monotonicity theorem (Corollary 4.3.3 in [2]) the d-th eigenvalue of $T\left(\mathbf{x}_{0, k}\right)$ can only increase by adding the positive operator Q_{y}. Since the eigenvalues of $T(\mathbf{x})$ are the same as those of $G(\mathbf{x})$ we have $\lambda_{d}\left(\mathbf{x}_{0, k}\right) \leq \lambda_{d}\left(\mathbf{x}_{y, k}\right)$, which proves the claim.

Now let V be the span of the d dominant eigenvectors v_{1}, \ldots, v_{d} of $G(\mathbf{x})$, and let W be the span of the $d-1$ dominant eigenvectors of $G\left(\mathbf{x}_{0, k}\right)$. Then $\operatorname{dim} W^{\perp}+\operatorname{dim} V=n+1$, so $W^{\perp} \cap V \neq\{0\}$ and we can choose a unit vector $u \in W^{\perp} \cap V$. We now use the variational characterization of the eigenvalues (Theorem 4.2.11 in [2]): Since $u \in V$ we have $\lambda_{d}(\mathbf{x}) \leq\langle G(\mathbf{x}) u, u\rangle$, and since
$u \in W^{\perp}$ we have $\left\langle G\left(\mathbf{x}_{0, k}\right) u, u\right\rangle \leq \lambda_{d}\left(\mathbf{x}_{0, k}\right)$. Thus, using the definition of the Gramian, polarization and Cauchy-Schwarz,

$$
\begin{aligned}
\lambda_{d}(\mathbf{x})-\lambda_{d}\left(\mathbf{x}_{y, k}\right) & \leq\left\langle\left(G(\mathbf{x})-G\left(\mathbf{x}_{0, k}\right)\right) u, u\right\rangle \\
& \leq\left\|u_{k}\left(x_{k}-0\right)\right\|\left\|\sum_{i} u_{i}\left(x_{i}+\left(\mathbf{x}_{0, k}\right)_{i}\right)\right\| \\
& \leq\left|u_{k}\right|\left(\left\|\sum_{i} u_{i} x_{i}\right\|+\left\|\sum_{i} u_{i}\left(\mathbf{x}_{0, k}\right)_{i}\right\|\right) \\
& =\left|u_{k}\right|\left(\langle G(\mathbf{x}) u, u\rangle^{1 / 2}+\left\langle G\left(\mathbf{x}_{0, k}\right) u, u\right\rangle^{1 / 2}\right) \\
& \leq 2\left|u_{k}\right|\langle G(\mathbf{x}) u, u\rangle^{1 / 2} \leq 2\left|u_{k}\right| \lambda_{\max }^{1 / 2} .
\end{aligned}
$$

The first conclusion follows from taking the infimum over $y \in \mathbb{B}$. The second conclusion is obtained by squaring and summing over k.

Proof of Theorem 1 and Corollary 2. Set $Z=\lambda_{d}(\mathbf{X}) / 2, W=\lambda_{\max }(\mathbf{X}) / 2$. Clearly $0 \leq Z \leq W$. By the previous proposition $Z(\mathbf{x})-\inf _{y} Z\left(\mathbf{x}_{y, k}\right) \leq 1$, $\Delta_{Z} \leq \lambda_{\max }=2 W$ and $\Delta_{W} \leq 2 W$, so that Theorem 3 and Corollary 4 can be applied with $a=2$. Theorem 1 and Corollary 2 follow.

References

[1] S.Boucheron, G.Lugosi, P.Massart, Concentration Inequalities using the entropy method, Annals of Probability 31, Nr 3, 2003
[2] R. A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1985
[3] A. Maurer. Concentration inequalities for functions of independent variables. Random Structures and Algorithms 29: 121-138, 2006
[4] C.McDiarmid, "Concentration", in Probabilistic Methods of Algorithmic Discrete Mathematics, p. 195-248. Springer, Berlin, 1998.
[5] J. Shawe-Taylor, C. K. I. Williams, N. Cristianini, J. S. Kandola: On the eigenspectrum of the gram matrix and the generalization error of kernelPCA. IEEE Transactions on Information Theory 51(7): 2510-2522, 2005

