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Abstract
We consider the concentration of the eigenvalues of the Gram matrix

for a sample of iid vectors distributed in the unit ball of a Hilbert space.
The square-root term in the deviation bound is shown to scale with the
largest eigenvalue, the remaining term decaying as n�1. This result is the
consequence of a general concentration inequality.

1 Introduction

LetX = (X1; :::; Xn) be a vector of independent random variables with values in
the unit ball B of some Hilbert space H, G (X) the Gramian G (X)ij = hXi; Xji
and �d = �d (X) the k-th eigenvalue of G (X) in descending order, where each
eigenvalue is repeated according to its multiplicity. We will prove the following
concentration property of the random variable �d.

Theorem 1 For t > 0

Pr f�d � E�d > tg � exp
�

�t2
16E�max + 6t

�
and

Pr fE�d � �d > tg � exp
�

�t2
16E�max + 4t

�
Since X is distributed in the unit ball, the trace of G (X) can be at most n,

but �max can be much smaller, so the above bound can be considerably better
than what we get if the bounded di¤erence inequality (see [4]) is applied to the
eigenvalues of the Gramian (see [5]).
Let Ĉ (X) be the random operator on H de�ned byD

Ĉ (X) y; z
E
=
1

n

nX
i=1

hy;Xii hXi; zi :

Ĉ describes the inertial moments of the empirical distribution (1=n)
Pn

i=1 �Xi

about the origin. The nonzero eigenvalues �d of Ĉ satisfy �d = �d=n. Our result
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can be converted into a purely empirical bound on the �d as in the following
corollary:

Corollary 2 Let � 2 (0; 1). Then

Pr

(
�d � E�d �

r
16�max ln 2=�

n
+
12 ln 2=�

n

)
� 1� �

and

Pr

(
E�d � �d �

r
16�max ln 2=�

n
+
10 ln 2=�

n

)
� 1� �:

The proof of Theorem 1 relies on a general concentration result, which may
be of independent interest. To state it we have to introduce some notation.
Suppose that 
 =

Qn
1 
i is some product space. If x 2 
, k 2 f1; :::; ng

and y 2 
k we write xy;k for the vector obtained from x by replacing the k-
th component with y. Also, if F : 
 ! R is bounded, we de�ne a function
�F : 
! R by

�F (x) =
X
k

�
F (x)� inf

y2
k
F (xy;k)

�2
:

If X is a random vector distributed in 
 we write EF for the expectation of the
random variable F (X).

Theorem 3 Let X = (X1; :::; Xn) be a vector of independent random variables
with values in spaces 
1; :::;
n, Z = Z (x) and W = W (x) real functions on

 =

Qn
1 
i and a � 1 such that

(i) 0 � Z �W
(ii) �Z � aW
(iii) �W � aW
Then

Pr fZ � EZ > tg � exp
�

�t2
4aEW + 3at=2

�
:

and, if in addition Z (x)� Z (xy;k) � 1; for all k, y 2 
k, then

Pr fEZ � Z > tg � exp
�

�t2
4aEW + at

�
:

The purely empirical bound of Corollary 2 is also valid in the more general
setting of Theorem 3.

Corollary 4 Under the conditions of Theorem 3, if W (x) �W (xy;k) � 1 for
all k; y 2 
k, we have for � 2 (0; 1):

Pr
n
Z � EZ >

p
4aW ln 2=� + 3a ln 2=�

o
< �;

and, if in addition Z (x)� Z (xy;k) � 1 for all k; y 2 
k, then

Pr

�
EZ � Z >

p
4aW ln 2=� +

5

2
a ln 2=�

�
< �:
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2 Proofs

We �rst introduce some additional notation and state some useful auxiliary
results. Then we prove Theorem 3 and Corollary 4, and �nally we apply these
results to the concentration of eigenvalues.
Let Z be a bounded random variable, � 2 Rn f0g. The Helmholtz energy is

the real number
HZ (�) =

1

�
lnEe�Z :

By l�Hospital�s rule the function HZ is continuously extended to R by de�ning
HZ (0) = EZ. The thermal expectation at inverse temperature � is de�ned by

E�ZW =
EWe�Z

Ee�Z
:

We will also make repeated use of the real function g de�ned by

g (t) =

�
(e�t + t� 1) =t2 for t 6= 0

1=2 for t = 0
: (1)

The function g is positive, nonincreasing, and for t � 0 and a > 0 we have

ag (t)

1� atg (t) �
max f1; ag

2
: (2)

The following lemma is proved in [3] (Lemma 11).

Lemma 5 For � > 0 and any Z : 
! R
(i)

lnE
h
e�(Z�E[Z])

i
� �

2

Z �

0

E
Z [�Z ] d
: (3)

(ii) If Z � infk Z � 1 for all k, then

lnE
h
e�(EZ�Z)

i
� �g (��)

Z �

0

E�
Z [�Z ] d
: (4)

A proof of the following decoupling lemma can be found in [1].

Lemma 6 We have

E�Z [f ] � �2H 0 (�) + lnEP
�
ef
�
: (5)

We also need two technical optimization inequalities.

Lemma 7 For t � 0 we have

inf
�2[0;1)

��t+ �
2 (2� �)
(1� �)2

� �t2
8 + 3t
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Proof. Consider the polynomial

p (s) = 3s2 � 3s� s3 + 1:

Then p (1) = 0, p0 (1) = 0 and p00 (s) � 0 for all s � 1. It follows that p (s) � 0
for all s � 1. Now de�ne

h (�; t) =
�2 (2� �)
(1� �)2

� �t+ t2

8 + 3t
:

It su¢ ces to show that inf�2[0;1) h (�; t) � 0 for all t � 0. Write s =
p
1 + t=2,

so that s � 1. Then

inf
�2[0;1)

h (�; t) = inf
�2[0;1)

h
�
�; 2

�
s2 � 1

��
� h

�
1� 1

s
; 2
�
s2 � 1

��
=

�
s2 � 1

�
s (1 + 3s2)

p (s) � 0:

Lemma 8 Let C and b denote two positive real numbers, t > 0. Then

inf
�2[0;1=b)

�
��t+ C�2

1� b�

�
� �t2
2 (2C + bt)

: (6)

The proof of this result can be found in [3] (Lemma 12).

Proof of Theorem 3. We �rst claim that for � 2 (0; 2=a)

lnE
�
e�W

�
� �EW

1� a�=2 ; (7)

a fact, which we will need for both tailbounds. Using (3) and assumption (iii)
we have for � > 0 that

lnE
h
e�(W�E[W ])

i
� a�

2

Z �

0

E
W [W ] d
 =
a�

2
lnEe�W ;

where the last identity follows from the fact that E
W [W ] = (d=d
) lnEe
W .
Thus

lnE
�
e�W

�
� a�

2
lnEe�W + �EW;

and rearranging this inequality for � 2 (0; 2=a) establishes the claim.
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Now we prove the upwards deviation bound. For � 2 (0; 2=a) by Lemma 6
for any random variable W ,Z �

0

E
Z [W ] d
 �
Z �

0


2H 0 (
) d
 + � lnE
�
eW
�

= � lnE
�
e�Z

�
� 2

Z �

0

lnE
�
e
Z
�
d
 + � lnE

�
eW
�
(*)

� � lnE
�
e�Z

�
+ � lnE

�
eW
�
(**)

= � lnE
h
e�Z�E[Z]

i
+ �2E [Z] + � lnE

�
eW
�
:

In (*) we used integration by parts and in (**) the fact that lnE
�
e
Z
�
� 0

if 
 � 0, since Z � 0. So, replacing W by �W we get by Lemma 5 (ii) and
�Z � aW

lnE
h
e�Z�E[Z]

i
� a

2

Z �

0

E
Z [�W ] d


� a�

2
lnE

h
e�Z�E[Z]

i
+
a�2

2
E [Z] +

a�

2
lnE

�
e�W

�
:

Substitution of (7) and subtracting (a�=2) lnE
�
e�Z�E[Z]

�
gives�

1� a�
2

�
lnE

h
e�Z�E[Z]

i
� a�2

2
E [Z] +

a

2

�2E [W ]

1� a�=2

� �2
a

2
E [W ]

�
1 +

1

1� a�=2

�
;

where we used EZ � EW for the second inequality. Dividing 1 � a�=2 we
obtain

lnE
h
e�Z�E[Z]

i
� a

2
E [W ]

�2 (2� a�=2)
(1� a�=2)2

:

Now we make use of Lemma 7

inf
�2[0;2=a)

a

2
E [W ]

�2 (2� a�=2)
(1� a�=2)2

� �t

=
2

a
E [W ] inf

�2[0;1)

"
�2 (2� �)
(1� �)2

� �
�

t

E [W ]

�#

� �t2
4aE [W ] + 3at=2

:

Conclude with Markov�s inequality.
To prove the lower tailbound let again � 2 (0; 2=a). Using Lemma 5 (ii) and

�Z � aW we get

lnEe�(EZ�Z) � �g (��)
Z �

0

E�
Z [�Z ] d
 � ag (��)
Z �

0

E�
Z [�W ] d
. (8)

5



Since Z is nonnegative, lnEe�
Z is nonincreasing and
R �
0
lnEe�
Zd
 � � lnEe��Z .

From integration by parts we therefore �nd thatZ �

0


2H 0 (�
) d
 = � lnEe��Z � 2
Z �

0

lnEe�
Zd
 � �� lnEe��Z ;

By the decoupling lemma 6 it follows thatZ �

0

E�
Z [�W ] d
 �
Z �

0

�

2H 0 (�
) + lnEe�W

�
d
 � �� lnEe��Z+� lnEe�W :

Resubstitution of this result in (8) gives

lnEe�(EZ�Z) � ag (��)
�
�� lnEe��Z + � lnEe�W

�
= �a�g (��) lnEe�(EZ�Z) + ag (��)

�
�2EZ + � lnEe�W

�
:

Now add a�g (��) lnEe�(EZ�Z) to both sides, factor out lnEe�(EZ�Z) and
rearrange to get

lnEe�(EZ�Z) � ag (��)
1 + a�g (��)

�
�2EZ + � lnEe�W

�
� a

2

�
�2EZ + � lnEe�W

�
;

where we used (2). But for � 2 (0; 2=a) we can substitute inequality (7) and
use assumption (i) to get

lnEe�(EZ�Z) � a

2

�
�2EZ +

�2E [W ]

1� a�=2

�
� aE [W ]

2

�
2�2 � a�3=2
1� a�=2

�
� aE [W ]

�2

1� a�=2 :

Now Lemma 8 gives us

inf
�20;2=a

�
��t+ aE [W ] �2

1� a�=2

�
� �t2
4aE [W ] + at

:

Conclude with Markovs inequality.

Proof of Corollary 4. Equating the two deviation probabilities in Theorem
3 to �=2 gives

Pr

�
Z � EZ > 2

p
EW

p
a ln 2=� +

3a ln 2=�

2

�
< �=2; (9)

and, if Z (x)� Z (xy;k) for all k; y 2 
k, then

Pr
n
EZ � Z > 2

p
EW

p
a ln 2=� + a ln 2=�

o
< �=2: (10)
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Theorem 13, 2nd conclusion in [3] shows that under the conditions of the corol-
lary also

Pr
n
EW �W >

p
2aEW ln 2=�

o
< �=2;

from which we derive

Pr
np
EW >

p
W +

p
2a ln 2=�

o
< �=2:

If we use a union bound to substitute this inequality in (9) and (10) and observe
that

p
2 < 3=2, we obtain the conclusions.

To prove Theorem 1 and Corollary 2 we use the following technical result
on the eigenvalues of the Gramian:

Proposition 9 Let B be the unit ball in some separable real Hilbert-space. For
x 2 Bn de�ne �d (x) to be the d-th eigenvalue (in descending order) of the
Gramian hxi; xji : Then 8x 2 Bn, k 2 f1; :::; ng we have

�d (x)� inf
y2B

�d (xy;k) � 2 and ��d (x) � 4�max (x) :

Proof. Fix x 2 Bn and some integer k 2 f1; :::; ng. We �rst claim that

inf
y2B

�d (xy;k) = �d (x0;k) :

The l.h.s. is clearly less than or equal the r.h.s. so we just have to show the
reverse inequality. It is easily veri�ed that �d (x) is also the d-th eigenvalue of
the �nite-rank operator T (x) 2 L (H) de�ned by

T (x) v =
nX
i=1

hv; xiixi for v 2 H.

Now let y 2 B be arbitrary and let Qy be the operator Qyv = hv; yi y. Then

T (xy;k) = T (x0;k) +Qy:

By Weyls monotonicity theorem (Corollary 4.3.3 in [2]) the d-th eigenvalue
of T (x0;k) can only increase by adding the positive operator Qy. Since the
eigenvalues of T (x) are the same as those of G (x) we have �d (x0;k) � �d (xy;k),
which proves the claim.
Now let V be the span of the d dominant eigenvectors v1; :::; vd of G (x),

and let W be the span of the d � 1 dominant eigenvectors of G (x0;k). Then
dimW? + dimV = n + 1, so W? \ V 6= f0g and we can choose a unit vector
u 2 W? \ V . We now use the variational characterization of the eigenvalues
(Theorem 4.2.11 in [2]): Since u 2 V we have �d (x) � hG (x)u; ui, and since
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u 2 W? we have hG (x0;k)u; ui � �d (x0;k). Thus, using the de�nition of the
Gramian, polarization and Cauchy-Schwarz,

�d (x)� �d (xy;k) � h(G (x)�G (x0;k))u; ui

� kuk (xk � 0)k





X

i

ui
�
xi + (x0;k)i

�





� jukj

 




X
i

uixi






+





X

i

ui (x0;k)i







!

= jukj
�
hG (x)u; ui1=2 + hG (x0;k)u; ui1=2

�
� 2 jukj hG (x)u; ui1=2 � 2 jukj�1=2max:

The �rst conclusion follows from taking the in�mum over y 2 B. The second
conclusion is obtained by squaring and summing over k.

Proof of Theorem 1 and Corollary 2. Set Z = �d (X) =2,W = �max (X) =2.
Clearly 0 � Z � W . By the previous proposition Z (x) � infy Z (xy;k) � 1,
�Z � �max = 2W and �W � 2W , so that Theorem 3 and Corollary 4 can be
applied with a = 2. Theorem 1 and Corollary 2 follow.
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