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Abstract. If regression tasks are sampled from a distribution, then the
expected error for a future task can be estimated by the average empirical
errors on the data of a �nite sample of tasks, uniformly over a class of
regularizing or pre-processing transformations. The bound is dimension
free, justi�es optimization of the pre-processing feature-map and explains
the circumstances under which learning-to-learn is preferable to single
task learning.1

1 Introduction

Suppose that an agency o¤ers to train predictors from the data-sets supplied
by its customers. The training data are previously sampled from whichever pre-
diction problems the customers happen to be interested in. The agency creates
the predictor and delivers it to the customer, who then tests it and rewards the
agency with a �xed amount minus a quantity in proportion to the predictors
loss observed in the test.
To compute the predictors from the data-sets the agency uses a �xed base

algorithm composed with a linear feature map which may be updated from
customer to customer.
For optimal rewards the agency should select a feature map which minimizes

the expected loss incurred in its future use. As the true distributions are un-
known, the simplest strategy is to minimize an empirical analogue of this loss on
the data-sets already supplied by previous customers. In this way the feature-
map should improve with experience, and the agency is learning to learn in a
very literal sense, as it uses past experience to improve learning performance on
future, yet unseen data. A justi�cation of this method would be a high probabil-
ity bound on the expected future loss in terms of the empirical loss, the bound
being uniform over the space of feature-maps parametrizing the algorithms.
Such bounds are the subject of this paper. They must not be confused with

similar results for multi-task learning, which bound the average expected loss
for a �xed set of distributions in terms of the corresponding empirical average.
Here we bound the expected loss for an unknown future distribution in terms of
the average empirical loss observed from the realizations of past distributions.

1 AMS subject classi�cation: primary 68T05, secondary 62J12.
Keywords: Learning to learn, transfer learning, kernel methods, generalization.
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Such results require that all distributions in question are drawn from a common
distribution of distributions, a construction which will be explained in the sequel.

For a more formal perspective on the problem assume that all the inputs
x lie in (or are mapped to) a Hilbert space H, all the outputs y are members
of the interval [0; 1], and that all predictors are given by bounded linear forms
on H, so they are of the type x 2 H 7! hw; xi for some weight vector w. The
restriction to linear predictors is partly compensated by allowing H to be in�nite
dimensional, so that kernel methods become applicable. The loss incurred by a
predictor w on an input-output pair (x; y) 2 H � [0; 1] is assumed to be the
square loss (hw; xi � y)2.
A customer�s problem is described by a probability measure � on the set of

input-output pairs H � [0; 1], and we will assume that all inputs lie in the unit
ball of H almost surely. The corresponding training data (x;y) are sampled in
m independent trials from this distribution, that is (x;y) � �m. For simplicity
we assume m to be the same for all customers and �xed throughout this paper.
We will imagine m to be a rather small number, which will make the potential
advantages of the proposed method more pronounced. The training data (x;y)
are then brought to the machine learning shop.
Assume that the agency�s base algorithm is regularized least squares regres-

sion with a �xed regularization parameter � > 0 (see sections 2.2 and 5), and
that the set of potential feature-maps is the set Pd of orthogonal projections P
with d-dimensional range in H. The choice of this set of feature-maps expresses
the belief that some initially unknown d-dimensional subspace of H contains the
prediction-relevant features for all customers. This belief can originate in the
fact that all the agency�s customers come from the same region or share some
interests, such as weather prediction or image processing. If P is the chosen
pre-processing projection, the agency computes and delivers the corresponding
weight vector !��1P (x;y) (the odd-looking notation will become clear later).
The customer then draws a test pair (x; y) from the distribution � and com-

putes the loss (h!��1P (x;y) ; xi � y)
2 which is subtracted from the agencies

reward.

To proceed we make the key assumptions that the encounter with a new
customer is itself a random event, governed by a probability distribution �, and
that the customers, as they appear in the agencies business history, correspond
to independent realizations of such events. Since the only statistically relevant
property of a customer is the distribution �, the encounter with a customer
corresponds to a draw � � �, so that � is a distribution on the set of input-
output distributions, a construction which has been termed an environment by
J. Baxter [6].

To compute the expected loss incurred from future use of the feature map
P 2 Pd we have to take the expectation of (h!��1P (x;y) ; xi � y)

2 as

� a new customer appears ( E��� ),
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� and prepares a training-set ( E(x;y)��m ),
� and a test pair ( E(x;y)�� ),

so that an optimal feature map P would minimize the transfer risk

R� (!��1P ) = E���E(x;y)��mE(x;y)��
h
(h!��1P (x;y) ; xi � y)

2
i
:

This quantity depends on the unknown distribution �, so an empirically acces-
sible estimator has to be used.
Suppose that there were n customers in the agency�s past business history.

This means that the data-sets
�
x1;y1

�
; :::; (xn;yn) were observed through n

independent draws of input-output distributions �k from � and subsequent iid
draws of training sets

�
xk;yk

�
from the �k. On each data-set

�
xk;yk

�
the use

of the projection P incurs the empirical loss

^̀
!��1P

�
xk;yk

�
=
1

m

mX
i=1

�

!��1P

�
xk;yk

�
; xki
�
� yki

�2
;

where
�
xki ; y

k
i

�
is the i-th pair in

�
xk;yk

�
. A conceptually simple algorithm to

select P then just minimizes the total empirical loss incurred by P over all past
data-sets:

P
��
x1;y1

�
; :::; (xn;yn)

�
= arg min

P2Pd

1

n

nX
k=1

^̀
!��1P

�
xk;yk

�
:

We can give a generalization guarantee for this algorithm in terms of a uniform
bound valid for all P 2 Pd.

Theorem 1. For all � > 0, we have with probability greater 1 � � in the data�
x1;y1

�
; :::; (xn;yn) that for all feature maps P 2 Pd

R (!��1P ) �
1

n

nX
k=1

^̀
!��1P

�
xk;yk

�
+

p
8�d

�

 
2

r
kCk1
m

+

r
1

n

!
+

r
ln (1=�)

2n
:

The quantity kCk1 appearing above is the largest eigenvalue of the covari-
ance operator C for the total input distribution. This distribution is obtained by
averaging all input marginals over �, and the operator C describes its moments
of inertia. The largest eigenvalue kCk1 can be interpreted geometrically as the
square of the length of the largest principal axis of the corresponding ellipsoid.

To make a case for learning-to-learn we have to show that there are rea-
sonable conditions under which the agency using this algorithm outperforms a
competitor who just uses conventional regularized least squares regression for all
customers, with the same regularization parameter and without pre-processing
projections. Without the projection the competitor will always achieve a lower
empirical error and conventional upper bounds on the competitors estimation
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error have the order of ��1=
p
m (see e.g. Bousquet and Elissee¤ [8]). For a fair

comparison we assume that the competitor achieves an empirical error of zero
and a fast decay of the competitors estimation error as 1= (�m). These assump-
tions appear to be rather optimal for the competitor and a maximal handicap for
learning to learn. So, if we ignore the dependence on the con�dence parameter
� on both sides, for learning to learn to still be preferable we should have

1

n

nX
k=1

^̀
!��1P

�
xk;yk

�
+
2

�

r
8�d kCk1

m
+
1

�

r
8�d

n
<

1

�m
:

This happens if each of the three terms on the l.h.s. is substantially smaller than
the r.h.s., that is

1. The tasks which were observed in the past must be empirically related, that is
(1=n)

Pn
k=1

^̀
!��1P

�
xk;yk

�
� 0 for some choice of a d-dimensional subspace

with projection P . This corresponds to the essential �prior belief�mentioned
above. Note however, that with standard model selection techniques (e.g.
Lemma 15.5 in [2]) our bound can be modi�ed to permit the choice of d
after seeing the data

�
x1;y1

�
; :::; (xn;yn) at only a logarithmic penalty in

d.
2. The input distribution must be high-dimensional so that d kCk1 � m�1.
To make this explicit suppose that the input distribution is concentrated
and uniform on a k-dimensional unit-sphere in H. Then, as the eigenvalues
of C must add up to one and are equal by symmetry, we have kCk1 = k�1,
so that d kCk1 decreases with the dimensionality k of the distribution. The
quantity d kCk1 = d=k can be interpreted as the ratio of utilizable to totally
present information.

3. The number n of past customers must be large in relation to d and m, that is
dm2 � n. This is always satis�ed for a large enough history. The practically
interesting regime is for very small m, say from m = 3 to m = 20.

If these conditions are met, learning-to-learn is the method of choice. They
coincide with the conditions under which multi-task learning is preferable to
single task learning. The di¤erences and similarities between multi-task learning
and learning-to-learn are discussed in more detail in section 6.1.
An analogue of Theorem 1 holds under much more general circumstances

with a class of base algorithms and loss functions satisfying a certain Lipschitz
condition to be expected for many kernel algorithms, and for essentially arbitrary
classes of compact linear feature maps, with possibly in�nite-dimensional range,
where the complexity penalty

p
d for projections is replaced by Schatten norms.

This is the content of Theorem 2, which is the principal result of this paper.

The next section introduces the necessary material to state Theorem 2. Sec-
tion 3 contains a summary of notation and auxiliary results needed for the proof
of Theorem 2 which is given in section 4. In section 5 it is shown that regularized
least squares regression satis�es the hypotheses of Theorem 2 and Theorem 1 is
derived. Finally we compare Theorem 2 to some related results in the literature.
An appendix summarizes the most frequently used notation in tabular form.
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2 Overview

We study regression where input data x lies in a Hilbert space H with inner
product h:; :i and norm k:k and unit ball B1 (H). Output data y lies in the interval
[0; 1]. Weight vectors are denoted w and make the prediction hw; xi for an input
point x 2 H. The loss of a weight vector w 2 H on a pair (x; y) 2 H � [0; 1]
is given by ` (hw; xi ; y) where the loss function ` : R � [0; 1] ! R+ measures
the discrepancy between the prediction in its �rst, and the true output in its
second argument. An important example is given by the square loss function
`sqr (y

0; y) = (y0 � y)2 :

2.1 Tasks and samples

A task is a probability measure � 2M1 (B1 (H)� [0; 1]), whereM1 (X ) generally
denotes the set of probability measures on a space X . Questions of measurability
are ignored throughout, and the reader who feels uneasy about this is asked to
consider only measures with a �xed �nite support of very large cardinality.
Relative to a task � the expected loss of a weight vector is E(x;y)��` (hw; xi ; y)

and our main goal is to �nd weight vectors w to make this quantity small.
Information on the task � is obtained by independently drawing a �nite num-

berm of training examples (xi; yi) � �. Such anm-tuple ((x1; y1) ; :::; (xm; ym)) �
�m is called a sample, which we also denote (x;y) = ((x1; y1) ; :::; (xm; ym)) with
the understanding that x = (x1; :::; xm) and y = (y1; :::; ym).
If x = (x1; :::; xm) 2 Hm the Gramian (or kernel-matrix) of x is the m�m-

matrix G (x) given by
G (x)ij = hxi; xji .

The Frobenius norm of any m�m-matrix A is denoted kAkFr. If T is a linear
operator on H we write (Tx;y) = ((Tx1; y1) ; :::; (Txm; ym)). The sample size m
will be �xed throughout.

2.2 Algorithms

A learning algorithm w is a function w : (H � [0; 1])m ! H. From the train-
ing sample (x;y) 2 (H � [0; 1])m it computes a weight vector w (x;y) 2 H,
which for an input-output pair (x; y) predicts hw (x;y) ; xi and incurs the loss
` (hw (x;y) ; xi ; y).
A real valued function associated with any algorithm w is its empirical loss

^̀
w : (H � [0; 1])m ! R+, de�ned by

^̀
w (x;y) =

1

m

mX
i=1

` (hw (x;y) ; xii ; yi) ;

which is just the average loss of the weight returned by the algorithm on its own
training data.
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De�nition 1. Relative to a �xed loss function `, an algorithm w : (H � [0; 1])m !
H is said to
(i) be 1-bounded if kw (x;y)k � 1 and ^̀w (x;y) � 1.
(ii) have kernel stability L if

^̀
w (x1;y)� ^̀w (x2;y) �

L

m
kG (x1)�G (x2)kFr :

for any x1;x2 2 Hm and y 2 [0; 1]m.

An example of a learning algorithm is regularized least squares regression !
with regularization parameter 1

! (x;y) = arg min
w2H

 
1

m

mX
i=1

(hw; xii � yi)2 + kwk2
!
:

It will be shown in section 5 that the algorithm ! is 1-bounded with kernel
stability 2 relative to the square loss `sqr .
Kernel stability of regularized least squares regression is not an exception. It

is easy to see that the empirical loss of any kernelizable algorithm w on the data
(x;y) is a function only of G (x) and y. If this function has Lipschitz constant
L for all y, then w has kernel stability mL.

2.3 Linear feature maps and modi�ed algorithms

Suppose w is an algorithm and D 2 L+ (H), which means that D is a symmetric,
positive semide�nite bounded linear operator. We can construct a new algorithm
wD with the formula

wD (x;y) = D
1=2w

�
D1=2x;y

�
:

For an input x 2 H the weight wD (x;y) makes the prediction hwD (x;y) ; xi =

w
�
D1=2x;y

�
; D1=2x

�
, so that D1=2 can be interpreted as a linear feature map

in a layered model: The behavior of wD is the same as that of w with all inputs,
both for training and testing, being pre-processed through the transformation
D1=2.
The empirical loss of the modi�ed algorithm wD is

^̀
wD (x;y) =

1

m

mX
i=1

`
�D
w
�
D1=2x;y

�
; D1=2xi

E
; yi

�
= ^̀w

�
D1=2x;y

�
.

For a simple example take regularized least squares regression w = ! and
D = ��1I, where � > 0 and I is the identity on H. Then by a change of variables

!��1I (x;y) = �
�1=2 arg min

w2H

 
1

m

mX
i=1

�D
w; ��1=2xi

E
� yi

�2
+ kwk2

!

= arg min
w2H

 
1

m

mX
i=1

(hw; xii � yi)2 + � kwk2
!
;
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so that !��1I is just the familiar regularized least squares algorithm with regu-
larization parameter �. More generally, if D 2 L+ (H) is nonsingular, a similar
change of variables gives

!D (x;y) = arg min
w2H

 
1

m

mX
i=1

(hw; xii � yi)2 +


D�1w;w

�!
:

This can be extended to general D by using pseudo-inverses and de�ning the
regularizer to be in�nite if w is not in the range of D (as in [3]), so for regularized
algorithms the inverse square of the feature map becomes a modi�ed regularizer.
Given a �xed base-algorithm w and a family of positive operatorsD � L+ (H)

we obtain a family of algorithms fwD : D 2 Dg. The principal goal is the sensi-
ble choice of an algorithm from this family on the basis of experience obtained
from an environment of tasks.

2.4 Environments

The encounter with a task � is itself a random event, corresponding to a draw � �
� where � is a probability measure on the set of tasks, that is � 2M1(M1 (B1 (H)� [0; 1])).
Baxter [6] calls such probability measures environments.
To test the performance of a given learning algorithm w in such an environ-

ment we should

�make a random choice of a task � � �
� draw a training sample (x;y) � �m
� draw a test pair (x; y) � �
� run the algorithm to obtain w (x;y)
� return the loss ` (hw (x;y) ; xi ; y).

The expected output of this procedure should be a good (negative) measure
of the performance of the algorithm in the given environment. This motivates
the de�nition of the transfer risk associated with the algorithm w

R� (w) = E���E(x;y)��mE(x;y)��` (hw (x;y) ; xi ; y) : (1)

Information on the environment � is obtained by independently drawing a
�nite number n of tasks �l � � and representing each task �l by a sample�
xl;yl

�
� (�l)

m,
�
xl;yl

�
=
��
xl1; y

l
1

�
; :::;

�
xlm; y

l
m

��
, with the understanding that

xl =
�
xl1; :::; x

l
m

�
and yl =

�
yl1; :::; y

l
m

�
. Write (X;Y) =

��
x1;y1

�
; :::; (xn;yn)

�
for the training data generated in this manner.

De�ne a probability measure �̂ on the set of samples (B1 (H)� [0; 1])m by
E�̂ (f) = E���E(x;y)��mf (x;y) for every Borel function f on (B1 (H)� [0; 1])m.
The measure �̂ models the draw of a training sample by

�making a random choice of a task � � �
� drawing the sample (x;y) � �m.

The entire training data (X;Y) above is therefore generated in n independent
draws from �̂, that is (X;Y) =

��
x1;y1

�
; :::; (xn;yn)

�
� �̂n.
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2.5 A bound for learning to learn

Suppose the given data (X;Y) � �̂n constitutes all our experience with the
environment �, and that we work with a �xed base algorithm w and a �xed
class D � L+ (H) of positive semide�nite operators. We want to use (X;Y)
to select some D (X;Y) 2 D such that the expected future performance of
the modi�ed algorithm wD(X;Y) is optimal, which is to say that R

�
wD(X;Y)

�
should be minimal or near minimal. The conceptually simplest way to do this is
empirical risk minimization,

D (X;Y) = arg min
D2D

1

n

nX
l=1

^̀
wD

�
xl;yl

�
; (2)

which just selects the algorithm with the best average performance on the
available data. To justify this procedure we need a high probability bound of
R
�
wD(X;Y)

�
in terms of (1=n)

P
l
^̀
wD(X;Y)

�
xl;yl

�
and the simplest form for

such a bound is uniform over D, that is it holds for all D 2 D, not just for
D (X;Y).

Theorem 2. Take conjugate exponents p and q with 1 = 1=p+1=q. Suppose the
algorithm w is 1-bounded and has kernel stability L relative to the loss function
` and that for every K > 0 there exists M (K) such that for all y 2 [0; 1] and
for all s; t 2 [�K;K] we have

` (s; y)� ` (t; y) �M (K) js� tj :

Then for any environment � 2M1(M1 (B1 (H)� [0; 1])) and for any � > 0; with
probability greater 1� � in the data (X;Y) � �̂n we have for all D 2 D

R� (wD) �
1

n

nX
l=1

^̀
wD

�
xl;yl

�
+

+

r
2�

m
M
�
kDk1=21

�
kDk1=2q kCk1=2p +

r
2�

n
L kDk2 +

r
ln (1=�)

2n
;

where kDkp = supD2D kDkp and kDkp = tr (jDj
p
)
1=p (kDk1 being the absolute

value of the largest singular value of D) and C = E���E(x;y)��Qx is the covari-
ance operator (see section 3.1).

The three terms in the second line above bound the estimation error and
correspond respectively to a bound on the within-task estimation error, a bound
on the inter-task estimation error and a term expressing the dependence on the
con�dence parameter �. For p � 2, which is the interesting regime, the norms of
the covariance operator, although in principle unknown, can be well estimated
from the normalized Gramian, thus converting the theorem to a data dependent
bound (see Theorem 3 below).
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2.6 Proof strategy

The idea of the proof is to write

R� (wD)�
1

n

nX
l=1

^̀
wD

�
xl;yl

�
=
�
R� (wD)� E(x;y)��̂ ^̀wD (x;y)

�
+

 
E(x;y)��̂ ^̀wD (x;y)�

1

n

nX
l=1

^̀
wD

�
xl;yl

�!

and to bound the two terms separately.
The �rst term can be rewritten as

E���E(x;y)��m
�
E(x;y)��` (hwD (x;y) ; xi ; y)� ^̀wD (x;y)

�
;

which is the estimation di¤erence expected for the future task. This can be
bounded using the 1-boundedness of w and the Lipschitz properties of the loss
function `. Such is done in Section 4.1 (see Theorem 6) and gives rise to the
m-dependent term in the bound of Theorem 2.
The other term in the decomposition is the estimation di¤erence between

the expected empirical error of the algorithms output on a new task and the
corresponding average on the known empirical errors of the output on the tasks
of the past. Bounding it involves complexity estimates of the function class

F =
n
(x;y) 7! ^̀

D (x;y) : D 2 D
o
;

which is accomplished using Slepian�s lemma and the boundedness and Lipschitz
(kernel stability) properties of w. See section 4.2.

3 Notation, de�nitions and auxiliary results

There is also an appendix containing a tabular summary of the notation used in
the paper.

3.1 Operators and matrices

For any Hilbert space H we use L (H) to denote the set of bounded operators
on H, and L+ (H) for the positive (semide�nite) members of L (H). L2 (H) is
the set of Hilbert-Schmidt operators, which becomes itself a Hilbert space with
the inner product hT; Si2 = tr (T �S) and the corresponding (Frobenius-) norm
k:k2. The set of positive (semide�nite) members of L2 (H) is denoted L

+
2 (H).

For operators T 2 L (H) the Schatten norms are denoted kTkp = tr (jT jp)1=p,
where jT j = (T �T )1=2, and Hölder�s inequality asserts that

jhT; Si2j � kTkp kSkq ; (3)
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if 1=p+1=q = 1, p; q 2 [1;1] and both norms on the right are �nite (Reed Simon
[19] and [18]).
For x; y 2 H the operators Qx and Jx;y are de�ned respectively by Qxz =

hz; xix and Jxyz = hz; xi y. For properties of Qx and Jx;y see [16]. Here we will
only use the following facts, which are easily veri�ed:

Lemma 1. Let x; y; x0; y0 2 H and T 2 L2 (H). Then
(i) hQx; Qyi2 = hx; yi

2
:

(ii) hT �T;Qxi2 = kTxk
2
:

(iii) hJx;y; Jx0;y0i2 = hx; x0i hy; y0i
(iv) hT; Jx;yi2 = hTx; yi.

In the �nite dimensional case and matrix notation we could write Qx = xxT .
If � is a probability measure onH, the operator valued expectation Ex�� [Qx]

is called the covariance operator of �. If � has support in B1 (H) we have
kE [Qx]k1 � 1. From a theorem in [20] on the concentration of means for vector-
valued variables we obtain, upon transferring to L2 (H)

Theorem 3. Suppose that � is a probability measure on B1 (H). Then for all
� > 0 with probability greater than 1� � in x = (x1; :::; xm) � �m we haveEx�� [Qx]� 1

m

mX
i=1

Qxi


2

� 2p
m

 
1 +

r
ln (1=�)

2

!
:

The quantity X
i

Qxi


2

=

0@X
i;j

hxi; xji2
1A1=2

is the Frobenius norm of the Gramian (or kernel-) matrix G (x)ij = hxi; xji, de-
noted kG (x)kFr. An immediate corollary to the above is, that (1=m) kG (x)kFr
is with high probability a good approximation of kE [Qx]k2. It follows from the
triangle inequality and the decreasing property of the Schatten norms k:kp that
for p � 2 the norm kE [Qx]kp may be equally well estimated by (1=m) k

P
iQxikp

on a �nite sample. See also [21] and [24].
With h:; :iRm and k:kRm we denote the canonical inner product and norm in

Rm. We sometimes write Nk = f1; :::; kg.

3.2 Rademacher and Gaussian averages

We will use (�i : i 2 N) to denote a sequence of independent random variables,
uniformly distributed on f�1; 1g and (i : i 2 N) for a sequence of independent,
N (0; 1)-distributed (standardized normal) variables, independent also of the ��s.
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For A � Rk we de�ne the Rademacher and Gaussian averages of A ([14],[4])
as

R (A) = E� sup
(x1;:::;xk)2A

2

k

kX
i=1

�ixi,

� (A) = E sup
(x1;:::;xk)2A

2

k

kX
i=1

ixi:

We will use the following inequality (see [14], 4.2, p 97):

R (A) �
p
�=2 � (A) . (4)

If F is a class of real functions on a space X and x = (x1; :::; xk) 2 X k we write

F (x) = F (x1; :::; xk) = f(f (x1) ; :::; f (xk)) : f 2 Fg � Rk:

The empirical Rademacher and Gaussian complexities of F on x are respectively
R (F (x)) and � (F (x)). If � 2M1 (X ) is a probability measure on X then the
corresponding expected complexities are Ex��mR (F (x)) and Ex��m� (F (x)).
The following Theorem is fundamental for our results. For the readers bene�t

we sketch a proof (for detailed proofs see van der Vaart and Wellner [23] for (i)
and Koltchinskii and Panchenko [13], Bartlett and Mendelson [4] for (ii)).

Theorem 4. Let F be a real-valued function class on a space X and � 2
M1 (X ). For x = (x1; :::; xm) 2 Xm de�ne

� (x) = sup
f2F

 
Ex�� [f (x)]�

1

m

mX
i=1

f (xi)

!
:

(i) Ex��m [� (x)] � Ex��mR (F (x)).
(ii) If F is [0; 1]-valued then 8� > 0 we have with probability greater than 1� �
in x � �m that

� (x) � Ex��mR (F (x)) +
r
ln (1=�)

2m
:

(iii) R (F (x)) may be replaced by
p
�=2 � (F (x)) in (i) and (ii).

Proof. For any realization � = �1; :::; �m of the Rademacher variables

Ex��m [� (x)] = Ex��m sup
f2F

1

m
Ex0��m

mX
i=1

(f (x0i)� f (xi))

� Ex;x0��m��m sup
f2F

1

m

mX
i=1

�i (f (x
0
i)� f (xi)) ;

because of the symmetry of the measure �m��m under the interchange xi $ x0i.
Taking the expectation in � and applying the triangle inequality gives (i). To
prove (ii) apply the Hoe¤ding-Azuma-McDiarmid concentration inequality [17]
to � and solve for the deviation. (iii) follows from (4) above.



12

We will only use Gaussian averages in the sequel. In doing so we loose little
(
p
�=2 � 1:25), but we gain the comparison properties of Gaussian averages,

which can be derived from the following Theorem, known as Slepian�s Lemma
(Ledoux and Talagrand 1991 [14]):

Theorem 5. Let 
 and � be mean zero, separable Gaussian processes indexed
by a common set A, such that

E (
a �
b)2 � E (�a ��b)2 for all a; b 2 A.

Then E supa2A
a � E supa2A�a:

Corollary 1. Let A � Rk and �1; :::; �k be real functions, each with Lipschitz
constant L. Denote ��A = f(�1 (x1) ; :::; �k (xk)) : (x1; :::; xk) 2 Ag. Then � (� �A) �
L � (A).

Proof. De�ne Gaussian processes 
 and �, indexed by A as 
x =
Pk

i=1 i�i (xi)

and �x = L
Pk

i=1 ixi. Then by the orthonormality of the i

E (
x �
x0)2 =
kX
i=1

(�i (xi)� �i (x0i))
2 � L2

kX
i=1

(xi � x0i)
2
= E (�x ��x0)2 ;

whence it follows from Slepians Lemma that

� (� �A) = 2

k
E sup
x2A


x �
2

k
E sup
x2A

�x = L � (A) :

In this case there is an analogous version for Rademacher averages (Ledoux
and Talagrand [14], Bartlett, Bousquet et al [5]), but in the proof of Theo-
rem 7 below we will encounter a situation where the comparison Theorems for
Rademacher averages are insu¢ cient and Theorem 5 is needed.

4 Proof of Theorem 2

We proceed as outlined in section 2.6 by separately bounding the expected es-
timation di¤erence for the future task and the estimation error between the
expected empirical loss in the future and the empirical loss observed in the past.

4.1 Bounding the estimation error for the future task

Here we bound the expected estimation error when a �xed symmetric operator
D1=2 is used as a preprocessor. This will give them-dependent term in the bound
of Theorem 1. We �rst give a bound on the Gaussian complexity of uniformly
bounded linear functionals acting on pre-processed inputs.
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Lemma 2. Let p and q be conjugate exponents, let D 2 L+ (H) and let GD be the
class of real functions on B1 (H)�[0; 1] de�ned by GD =

�
(x; y) 7!



w;D1=2x

�
: kwk � 1

	
.

(i) For any � 2M1 (B1 (H)� [0; 1])

E(x;y)��m� (GD (x;y)) �
2p
m
kC�k1=2p kDk1=2q ;

where C� is the covariance operator of � de�ned by C� = Ex��Qx.
(ii) For any environment � 2M1 (M1 (H � [0; 1]))

E���E(x;y)��m� (GD (x;y)) �
2p
m
kCk1=2p kDk1=2q ;

where C is the total covariance operator of � de�ned by C = E���Ex��Qx.

Proof. The inequalities below are Cauchy-Schwarz�, Jensen�s and Hölder�s (3)
inequalities.

E(x;y)��m� (GD (x;y)) =
2

m
Ex��mE sup

kwk�1

mX
i=1

i

D
w;D1=2xi

E
=
2

m
Ex��mE sup

kwk�1

*
w;

mX
i=1

iD
1=2xi

+

� 2

m
Ex��mE


mX
i=1

iD
1=2xi

 (Cauchy-Schwarz)
� 2

m

0@Ex��mE

mX
i=1

iD
1=2xi


2
1A1=2

(Jensen)

=
2

m

 
Ex��m

mX
i=1

D1=2xi

2!1=2 (independence of i)
=

2p
m
hEx�� [Qx] ; Di1=22 (Lemma 1, (ii))

� 2p
m
kC�k1=2p kDk1=2q (Hölder).

This proves (i). To prove (ii) go through the same steps with Ex��m replaced
by E���Ex��m , and Ex�� replaced by E���Ex�� in the last two lines.

Theorem 6. Suppose that the learning algorithm w satis�es kw (x;y)k � 1 for
all (x;y) 2 (H � [0; 1])m, and that for every y 2 [0; 1] and K < 1 the loss
function ` (:; y) has Lipschitz constant M (K) on the interval [�K;K]. Then for
every environment � 2M1 (M1 (B1 (H)� [0; 1])) and every D 2 L+ (H) we have

R (wD)� E(x;y)��̂
h
^̀
wD (x;y)

i
�
r
2�

m
M
�
kDk1=21

�
kDk1=2q kCk1=2p :
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Proof. By assumption we have
w �D1=2x;y

� � 1;8 (x;y), so we can bound
any quantity depending on w

�
D1=2x;y

�
by the corresponding supremum over

all w with kwk � 1. Using this and Theorem 4 (i) and (iii) we get for any
� 2M1 (B1 (H)� [0; 1])

E(x;y)��m
�
E(x;y)�� [` (hwD (x;y) ; xi ; y)]� ^̀wD (x;y)

�
� E(x;y)��m

"
sup
kwk�1

E(x;y)��`
�D
w;D1=2x

E
; y
�
� 1

m

X
`
�D
w;D1=2xi

E
; yi

�#
�
p
�=2 E(x;y)��m� (HD (x;y)) ;

where HD is the function class HD =
�
(x; y)! `

�

w;D1=2x

�
; y
�
: kwk � 1

	
.

Let (x;y) be any sample in the support of �m. For kwk � 1 we have


w;D1=2xi

�
2h

�kDk1=21 ; kDk1=21

i
. On this interval the function �i : t 7! ` (t; yi) has Lipschitz

constant M
�
kDk1=21

�
by assumption. If GD is the function class of the previous

lemma then

HD (x;y) = f(�1 � g (x1) ; :::; �m � g (xm)) : g 2 GDg ;

so it follows from Corollary 1 that � (HD (x;y)) � M
�
kDk1=21

�
� (GD (x)).

From the de�nition of the transfer risk (1) and the previous lemma we get

R (wD)� E(x;y)��̂
h
^̀
wD (x;y)

i
= E���E(x;y)��m

�
E(x;y)�� [` (hwD (x;y) ; xi ; y)]� ^̀wD (x;y)

�
�
p
�=2M

�
kDk1=21

�
E���E(x;y)��m� (HD (x;y))

�
r
2�

m
M
�
kDk1=21

�
kDk1=2q kCk1=2p :

4.2 Predicting the empirical error for the future task

For this section �x a class of operators D � L+ (H). Now we want to use the
average of the empirical errors ^̀wD

�
xl;yl

�
incurred on the tasks of the past to

predict the empirical error ^̀wD (x;y) on the data (x;y) drawn from a future
task. We are aiming for a bound on the prediction error

E(x;y)��̂ ^̀wD (x;y)�
1

n

nX
l=1

^̀
wD

�
xl;yl

�
which is uniformly valid for all D 2 D. For 1-bounded w we have ^̀wD (x;y) 2
[0; 1], so we can invoke Theorem 4 if we have a bound on the Gaussian complexity
of the function class

F =
n
(x;y) 7! ^̀

wD (x;y) : D 2 D
o
:
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Since boundedness and kernel-stability are all we need, the corresponding result
can be cast in a more general form which can also be used to predict the minimal
value of the objective function for regularized least squares regression on future
tasks.
The proof reveals the reason why Gaussian averages are used. While Rademacher

averages can be compared for Lipschitz functions � : R! R (e.g. Theorem 4.12)
in [14]) no such results seem available for Lipschitz functions � : Rd ! R, where
Rd is given the euclidean metric.

Theorem 7. Suppose f : (H � [0; 1])m ! [0; 1] satis�es the Lipschitz condition

f (x;y)� f (x0;y) � L

m
kG (x)�G (x0)kFr ; (5)

for all x;x0 2 Hm and all y 2 [0; 1]m. Let D be a class of nonnegative de�nite
operators on H. Then with

F =
n
(x;y) 7! f

�
D1=2x;y

�
: D 2 D

o
we have for any probability measure �̂ on (B1 (H)� [0; 1])m

E(X;Y)��̂n� (F (X;Y)) �
2L kDk2p

n
:

Proof. Fix a meta-sample (X;Y) =
��
x1;y1

�
; :::; (xn;yn)

�
. De�ne Gaussian

processes 
D and �D indexed by D as follows:


D =
nX
l=1

lf
�
D1=2xl;yl

�
�D =

L

m

nX
l=1

mX
i;j=1

lij


xli; Dx

l
j

�
;

where all the l and lij are mutually independent N (0; 1) distributed variables.
Observe that (2=n)E supD 
D = � (F (X;Y)). Then for D1 and D2 in D we
have by orthonormality of the l and the Lipschitz condition

E (
D1
�
D2

)
2
= E

 
nX
l=1

l
�
f
�
D
1=2
1 xl;yl

�
� f

�
D
1=2
2 xl;yl

��!2

=
nX
l=1

�
f
�
D
1=2
1 xl;yl

�
� f

�
D
1=2
2 xl;yl

��2
�
�
L

m

�2 nX
l=1

G�D1=2
1 xl

�
�G

�
D
1=2
2 xl

�2
Fr

by (5)

=

�
L

m

�2 nX
l=1

mX
ij=1

�

xli; D1x

l
j

�
�


xli; D2x

l
j

��2
= E (�D1

��D2
)
2
;
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where the last equality follows from orthonormality of the lij . It then follows
from Slepians lemma (Theorem 5) that E supD 
D � E supD �D. Multiplying
with 2=n this becomes

� (F (X;Y)) � 2

n
E sup

D2D

L

m

nX
l=1

mX
i;j=1

lij


xli; Dx

l
j

�
: (6)

De�ne an operator J lij on H by J lijz =


z; xli

�
xlj . By Lemma 1 (iii) and (iv)

we have
J lij2 = xlixlj and 
xli; Dxlj� = 


J lij ; D
�
2
. Then with Schwarz�

inequality applied to the Hilbert-Schmidt inner product we obtain

nX
l=1

mX
i;j=1

lij


xli; Dx

l
j

�
=

*
nX
l=1

mX
i;j=1

lijJ
l
ij ; D

+
2

�


nX
l=1

mX
i;j=1

lijJ
l
ij


2

kDk2 ;

so that we get from (6), Jensen�s inequality and independence of the lij

� (F (X;Y)) � 2L kDk2
nm

E


nX
l=1

mX
i;j=1

lijJ
l
ij


2

� 2L kDk2
nm

0B@E

nX
l=1

mX
i;j=1

lijJ
l
ij


2

2

1CA
1=2

=
2L kDk2
nm

0@ nX
l=1

mX
i;j=1

xli2 xlj2
1A1=2

� 2L kDk2p
n

;

almost surely w.r.t. �̂n, since kxik � 1 almost surely w.r.t. �̂n. The conclusion
follows.

Using Theorem 4 (ii) and (iii) we immediately obtain

Theorem 8. Let � > 0 and let f be as in the previous theorem. Then with
probability greater that 1�� in the draw of the sample

��
x1;y1

�
; :::; (xn;yn)

�
� �̂

we have for every D 2 D that

E(x;y)��̂
h
f
�
D1=2x;y

�i
� 1

n

nX
l=1

f
�
D1=2xl;yl

�
+

p
2�L kDk2p

n
+

r
ln (1=�)

2n

If w is 1-bounded and has kernel stability L then ^̀w can be substituted for
f . Together with Theorem 6 this implies that with probability greater 1 � � in
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x1;y1

�
; :::; (xn;yn)

�
we have for all D 2 D that

R (D)� 1

n

nX
l=1

^̀
wD

�
xl;yl

�
=
�
R (D)� E(x;y)��̂ ^̀wD (x;y)

�
+

 
E(x;y)��̂ ^̀wD (x;y)�

1

n

nX
l=1

^̀
wD

�
xl;yl

�!

�
r
2�

m
M
�
kDk1=21

�
kDk1=2q kCk1=2p +

r
2�

n
L kDk2 +

r
ln (1=�)

2n
;

which gives Theorem 2.

5 Regularized least squares regression

For any sample (x;y) 2 (H � [0; 1])m the algorithm ! and its empirical loss ^̀!
and minimal objective value � are de�ned by

! (x;y) = arg min
w2H

 
1

m

mX
i=1

(hw; xii � yi)2 + kwk2
!
,

^̀
! (x;y) =

1

m

mX
i=1

(h! (x;y) ; xii � yi)2 ;

� (x;y) = min
w2H

 
1

m

mX
i=1

(hw; xii � yi)2 + kwk2
!
:

The �rst two assertions in the following proposition state that, relative to square
loss, ! satis�es the hypotheses of Theorem 2 with L = 2. The third assertion im-
plies that the minimal value � of the regularized objective can also be estimated
uniformly over the set of pre-processing operators.

Proposition 1. 8x;x0 2 Hm;y 2 [0; 1]m we have
(i) k! (x;y)k � 1 and ^̀! (x;y) � 1 and � (x;y) � 1.
(ii) ^̀! (x;y)� ^̀! (x0;y) � (2=m) kG (x)�G (x0)kFr
(iii) � (x;y)� � (x0;y) � (1=m) kG (x)�G (x0)kFr :

For the proof we use the following lemma, the proof of which is given in [15],
Lemma 11.

Lemma 3. Let G1 and G2 be positive semide�nite operators on any Hilbert
space and � > 0. Then
1. Gi + �I is invertible,

2.
(Gi + �I)�1

1
� 1=� and

3. we have(G1 + �I)�1 � (G2 + �I)�1
1
� 1

�2
kG1 �G2k1 :
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4. Let x1 and x2 satisfy (Gi + �I)xi = y. Then���kx1k2 � kx2k2��� � 2��3 kG1 �G2k1 kyk2 .
Proof (Proof of Proposition 1). We have

^̀
! (x;y) + k! (x;y)k2 = min

w2H
^̀
sqr (hw;xi ;y) + kwk2

� ^̀
sqr (h0;xi ;y) + k0k2 � 1;

which proves (i), since both terms on the left are nonnegative and their sum is
� (x;y).
A standard argument shows that 9� = � (x;y) 2 Rm such that ! (x;y) =Pm
j=1 �jxj with � (x;y) = (G (x) +mI)

�1
y where I is the identity matrix.

Also h! (x;y) ; xii =
Pm

j=1 �j hxj ; xii = (G (x)�)i, so

^̀
! (x;y) =

1

m

mX
i=1

((G (x)�)i � yi)
2

=
1

m

mX
i=1

(((G (x) +mI)�)i � yi �m�i)
2

= m
X

�2i = m
(G (x) +mI)�1 y2

Rm
: (7)

We therefore also have

� (x;y)

= k! (x;y)k2 + ^̀! (x;y)

= h�;G (x)�iRm +m
(G (x) +mI)�1 y2

Rm

=
D
(G (x) +mI)

�1
y;G (x) (G (x) +mI)

�1
y+m (G (x) +mI)

�1
y
E
Rm

=
D
(G (x) +mI)

�1
y;y

E
Rm
: (8)

Using identity (7) and Lemma 3 applied to Rm we get���^̀! (x;y)� ^̀! (x0;y)��� = m�����(G (x) +mI)�1 y2Rm � (G (x0) +mI)�1 y2Rm
�����

� 2m�2 kG (x)�G (x0)kRm;1 kyk
2
Rm :

Now kyk2Rm =
P
y2i � m. Also kG (x)�G (x0)kRm;1 � kG (x)�G (x0)kFr so

(ii) follows. Proceeding similarly we get

j� (x;y)� � (x0;y)j = m
���D�(G (x) +mI)�1 � (G (x0) +mI)�1�y;yE

Rm

���
� m�2 kG (x)�G (x0)kRm;1 kyk

2
Rm

� m�1 kG (x)�G (x0)kFr :

QED
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We can now apply Theorem 2 to regularized least squares regression. On the
interval [�K;K] the square loss `sqr (:; y) has Lipschitz constant 2 (K + 1), so
we can setMK = 2 (K + 1). By the above ! satis�es the hypotheses of Theorem
2 with L = 2.
To get Theorem 1 in the introduction we take D =

�
��1P : P 2 Pd

	
, where

� > 0 is �xed and Pd is the set of orthogonal projections inH with d-dimensional
range. For �xed P 2 Pd the algorithm !��1P is just ordinary RLSR with regu-
larizing parameter � and a d-dimensional subspace constraint expressed by the
projection P .
We have kDk2 = �

�1pd and kDk1 = ��1 and kDk1 = �
�1d for all D 2 D.

Let us also set q = 1 and p =1 and assume � � 1. The bound (slightly loosened
for the sake of simplicity) then says that with probability greater 1� � we have
for all P 2 Pd that

R (!��1P ) �
1

n

nX
l=1

^̀
!��1P

�
xl;yl

�
+

p
8�d

�

 
2

r
kCk1
m

+

r
1

n

!
+

r
ln (1=�)

2n
;

which is the bound of Theorem 1, obtained as a corollary to Theorem 2.
Another interesting consequence of Proposition 1 regards the minimal objec-

tive function �. From Theorem 8 we obtain

Corollary 2. For � > 0, with probability greater that 1 � � in the draw of the
sample

��
x1;y1

�
; :::; (xn;yn)

�
� �̂ we have for every D 2 D that

E(x;y)��̂
h
�
�
D1=2x;y

�i
� 1

n

nX
l=1

�
�
D1=2xl;yl

�
+

p
�L kDk2p
2n

+

r
ln (1=�)

2n
:

It follows that the expected values of
! �D1=2x;y

�, ^̀! �D1=2x;y
�
and

�
�
D1=2x;y

�
for future samples (x;y) can all be estimated uniformly for D 2 D.

6 Related work

There has been considerable interest in transfer learning, learning-to-learn and
multi-task learning, and many encouraging experimental results have been ob-
tained ([9], see also [22]). The study of learning beyond the con�nements of
single tasks is motivated by the study of biological learning systems, where it is
observed that, in addition to the rewards obtained for learning the task at hand,
learners can bene�t by improving their learning ability for future, yet unknown
tasks.

6.1 Multi-task vs transfer-learning

The theoretical properties of corresponding machine learning systems were stud-
ied in depth by J. Baxter [6], who introduced the notion of an environment (es-
sential for the statement of our results) and realized that there are two distinct
aspects to his �ndings
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� "Learning multiple related tasks reduces the sampling burden required for
good generalization, at least on a number-of-examples-required-per-task ba-
sis.

�Bias that is learnt on su¢ ciently many training tasks is likely to be good for
learning novel tasks drawn from the same environment."[6]

The �rst observation regards the subject ofmulti-task learning (MTL), where
the task-distributions �1; :::; �n are �xed in advance and potential relations be-
tween the tasks are exploited to minimize the expected loss for the same set of
tasks. From the available data the MTL algorithm produces a multi-hypothesis,
that is a vector of hypotheses, one for each task at hand. Theoretical studies of
MTL typically bound the task-average expected loss of such a multi-hypothesis
(see [6],[1],[16]), but under certain speci�c assumptions on the relationships be-
tween the various tasks better results are obtainable, which uniformly bound the
expected loss for each task in the set (as in Ben-David [7]).
In either case the bounds can be expressed in terms of an empirical average

of the loss plus a bound B (n;m) on the estimation error, where n is the number
of tasks and m the number of examples per task. If such bounds are any good,
we better have B (n;m) ! 0 as m ! 1 for all n, because this is what we
already get for single task learning. The speci�c bene�t of multi-task learning is
exposed in the limit n ! 1, for �xed and possibly rather small m. If we have
lim supn!1B (n;m) � B0 (m), where B0 would be a bound for some competing
single-task algorithm, then multi-task learning is preferable to ordinary learning,
for a large number of tasks and the given number of examples per task.
The second point raised by Baxter addresses learning-to-learn (LTL) and

transfer, and - if the term bias is specialized to linear feature map - the subject
of this paper. Here the notion of an environment, which is irrelevant to the
discussion of multi-task learning, becomes crucial. The quantity to be bounded
is the transfer-risk introduced above, or an intermediate construction as in [6],
and again the bound is formulated as the sum of an empirical average and a
bound B (n;m) on the estimation error. But, owing to the fact that we now
bound the expected loss for a new task and not for an ensemble of known tasks,
there are essential di¤erences. We will not have B (n;m)! 0 as m!1 for all
n, because there is an extra estimation di¤erence between the expected loss on
a new task and the average expected loss on the sampled tasks. For the bounds
to be tight we should have B (n;m) ! 0 as m ! 1 and n ! 1. Theorem 2
satis�es this requirement.
To highlight the di¤erences of bounds for LTL and bounds for MTL we give

an example of the latter, taken from [16] and modi�ed for easy comparison to
Theorem 2 (for the case p = q = 2):

Theorem 9. Suppose M (:) and ` are as in Theorem 2.
Then for every set of tasks (�1; :::; �n) 2 M1 (B1 (H)� [0; 1])n and every

8� > 0; with probability greater than 1� � in the draw
��
x1;y1

�
; :::; (xn;yn)

�
�
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l=1 (�l)

m it holds for all D 2 D and all
�
v1; :::; vn

�
2 B1 (H)n that

1

n

nX
l=1

E(x;y)��l
h
`
�D
vl; D1=2x

E
; y
�i
� 1

nm

nX
l=1

mX
i=1

`
�D
vl; D1=2xli

E
; yli

�
+

2p
m
M
�
kDk1=21

�
kDk1=22

�
kCk22 +

3

n

�1=4
+

r
ln (1=�)

2nm
:

Here the environment � is replaced by the �xed task distributions �1; :::; �n
and the right hand side of the above inequality can only be determined from
realizations of all of these distributions. The MTL Theorem 9 does therefore not
imply generalization beyond this �xed set of tasks and is weaker than the LTL
Theorem 2 in this respect. But the MTL bound works for any algorithm selecting
its weights from the unit ball, while our LTL bound requires the weight vectors
vl to be obtained by an algorithm with speci�c Lipschitz properties. Theorem
9 can therefore not be derived by applying Theorem 2 to the environment � =
(1=n)

P
l ��l . The two results are inequivalent.

For any number of tasks n the bound on the estimation error in the MTL
Theorem 9 goes to zero as m ! 1, as we required for multitask learning. But
for �xed sample size m and n!1 the limit is

2p
m
M
�
kDk1=21

�
kDk1=22 kCk1=22

which is, apart from the factor
p
�=2 � 1:25, the same as in the LTL Theorem

2, which shows an important similarity of the two results: In the presence of
algorithms with appropriate Lipschitz properties and for a large number of tasks,
any argument in favour of MTL over single task learning should also give an
argument in favour of LTL over single task learning.
Another similarity of MTL and LTL is the following: In practice multi-task

learning and learning to learn both operate on samples drawn from multiple
tasks, and for clever MTL algorithms learning to learn can be a by-product (as
in [1] and [3], see also section 6.3 below). These similarities are the reason why
the two subjects are easily confused.

6.2 Bounds for learning to learn

The comparison of our result to other bounds is made easy by the fact that,
despite the fascinating quality of the subject, to the author�s knowledge there
are only the pioneering work by Baxter [6] and a precursor of the present work
[15] where bounds for learning to learn are proposed.
Baxter�s paper follows the paradigm of empirical risk minimization, where the

choice of a learning algorithm is equivalent to the choice of the hypothesis space
H from which the algorithm chooses its hypothesis, so as to minimize empirical



22

risk. This is similar to the learning of a d-dimensional subspace constraint as put
forward in the introduction. In the general case studied here, where we select
from general classesD of Hilbert-Schmidt operators, this analogy no longer holds,
because the ranges of all D 2 D may be the same and equal to H.
Let us write wH for the ERM algorithm (assuming all hypothesis spaces to

be �nite for simplicity)

wH (x;y) = argmin
h2H

1

m

mX
i=1

` (h (x) ; y) :

If H is a collection of hypothesis spaces, then fwH : H 2 Hg is a collection of
algorithms and within the framework of the present paper we would look for a
high probability bound on the transfer risk R (wH) uniformly over all H 2 H.
Baxter does not give such a bound directly, but gives a high probability bound
on

er� (H) = E���min
h2H

E(x;y)��` (h (x) ; y) ;

uniformly over all H 2 H, and we can write

R (wH)�
1

n

nX
l=1

^̀
wH

�
xl;yl

�
= (R (wH)� er� (H)) +

 
er� (H)�

1

n

nX
l=1

^̀
wH

�
xl;yl

�!
:

If every hypotheses space H 2H has bounded capacity, then we can �nd a bound
of O

�
m�1=2� on the �rst term, and a bound on the transfer risk results, making

the results comparable.
The bound on er� (H) is formulated in terms of covering numbers of H,

which depend on the unknown distribution �. When converted to a concrete
bound (e.g. in Theorem 8 in [6]) it becomes dimension dependent and becomes
trivial for many kernelized forms of transfer learning (for example with Gaussian
RBF-kernels), in contrast to the dimension free results in this paper.
In [15] the alternative decomposition

R (wH)�
1

n

nX
l=1

^̀
wH

�
xl;yl

�
=
�
R (wH)� E(x;y) ^̀wH (x;y)

�
+

 
E(x;y) ^̀wH (x;y)�

1

n

nX
l=1

^̀
wD

�
xl;yl

�!

is proposed, as it is used in this paper. Again the �rst term is bounded in
O
�
m�1=2� if all the H 2 H have bounded capacity. To bound the second term

one seeks to �nd a bound on the capacity of the function class

FH =
n
(x;y) 7! ^̀

wH (x;y) : H 2H
o
:
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In [15] (Proposition 9) it is shown, that the N1-covering numbers of this function
class are always bounded by the capacities used in [6], and may be �nite when the
latter become in�nite, indicating that the proposed decomposition is preferable.
Instead of using covering numbers [15] proposes stability arguments to bound the
second term in the decomposition. The stability requirement however imposes
severe restrictions on the class of LTL algorithms to which the results apply. In
[15] a heuristically motivated meta-algorithm (the "chorus of prototypes" taken
from [10]) is proposed, which satis�es these requirements.
The restriction to linear feature maps in combination with the use of empir-

ical process theory to bound the second term in the decomposition above, as in
the present paper, leads to generalization bounds for LTL extensions of popular
algorithms, such as ridge regression (see the next section), still applicable in a
kernelized, in�nite-dimensional setting.

6.3 Convex multi-task learning

While the problems of �nding bounds for transfer and multi-task learning are
somewhat distinct, algorithms for multi-task learning can be used for transfer,
if, along with the requested multi-hypothesis, they also output some common
structural parameter, which can be used in future learning.
An algorithm with particularly attractive properties is given in [3]. The

square-loss version of it minimizes the functional

F (W;D) =
1

nm

nX
l=1

mX
i=1

`sqr
�

wl; xli

�
; yli
�
+ �

1

n

nX
l=1



D+wl; wl

�
;

where
�
wl
�n
l=1

is the multi-hypothesis returned by the algorithm. � > 0 is a
regularization constant and D 2 L+ (H) is positive and satis�es kDk1 � 1 and
D+ is the pseudoinverse of D. We can absorb � in the constraint on D by
demanding D 2 D =

�
D 2 L+ (H) : kDk1 � �

�1	. With a change of variables
vl = D1=2wl we �nd that the algorithm selects the pre-processor D (X;Y)1=2,
where D (X;Y)1=2 is given by

D (X;Y) = arg min
D2D

min
v1;:::;vn2H

1

n

nX
l=1

 
1

m

mX
i=1

`sqr

�D
vl; D1=2xli

E
; yli

�
+


vl; vl

�!

= arg min
D2D

1

n

nX
l=1

�
^̀
!D

�
xl;yl

�
+
!D �xl;yl�2� ;

so it minimizes an upper bound to (1=n)
Pn

l=1
^̀
!D

�
xl;yl

�
. Since kDk1 � kDk2 �

kDk1 = ��1 we obtain for this algorithm from Theorem 2 the generalization
guarantee that w.h.p.

R (D) � (1=n)
nX
l=1

^̀
!D

�
xl;yl

�
+ ��1
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It also follows from Corollary 2 that the expected value of the minimal objec-
tive for least squares regression on the future task can be well estimated from
the quantity which is being minimized for D. The algorithm has an e¢ cient
implementation and is shown to converge in [3].
Note that this algorithm�s primary purpose is to �nd a good multi-hypothesis

for the given tasks, so as to satisfy a set of current customers of the machine
learning agency. The utility of the feature map D1=2 (or the regularizer D+) for
future learning is a pleasant by-product of this e¤ort.
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Appendix: Glossary of terms and notation

Notation Short Description Section

H real, separable Hilbert space 3.1,2
h:; :i and k:k inner product and norm on H 3.1,2
B1 (H) unit ball in H : fx 2 H : kxk � 1g 3.1,2
H2 Hilbert-Schmidt operators on H 3.1
L (H) bounded linear operators on H 3.1
k:k1 operator norm kTk1 = supkxk�1 kTxk
L+ (H) positive semide�nite members of L (H) 3.1
L2 (H) Hilbert Schmidt operators on H 3.1
L+2 (H) positive semide�nite members of L2 (H) 3.1
h:; :i2 Frobenius inner product hT; Si2 = tr (S�T ) 3.1

k:kp Schatten norm kTkp = tr (jT j
p
)
1=p, p � 1 3.1

Pd d-dimensional orthogonal projections in H 3.1,1
Qx, for x 2 H operator Qxz = hz; xix, 8z 2 H 3.1
Jx;y, for x; y 2 H operator Jx;yz = hz; xi y, 8z 2 H 3.1,4.2
C = EQX covariance operator of r.v. X in H 3.1,1
k:kFr Frobenius norm for m�m matrices 3.1

kAkFr =
�P

ij A
2
ij

�1=2
k:kRm euclidean norm on Rm 3.1

M1 (X ) probability distributions on X 2.1
M1 (B1 (H)� [0; 1]) set of learning tasks 2.1
� 2M1 (B1 (H)� [0; 1]) 2.1

a generic learning task
(x; y) � � the draw of an input-output pair from � 2.1
C� covariance operator C� = E���E(x;y)��Qx 3.1
(x;y) 2 (H � [0; 1])m 2.1

a sample of m input-output pairs
(x;y) = ((x1; y1) ; :::; (xm; ym))

G (x) Gramian matrix G (x)ij = hxi; xji 2.1
(x;y) � �m an iid draw of a sample 2.1
� a prob. distribution on M1 (B1 (H)� [0; 1]) 2.4
� � � the draw of a learning task from � 2.4
C total covariance operator E���C�
�̂ 2M1 ((B1 (H)� [0; 1])m) 2.4

the distribution �̂ (x;y) = E����m (x;y)
(x;y) � �̂ draw of task, followed by iid draw of sample 2.4
(X;Y) 2 (H � [0; 1])mn 2.4��

x1;y1
�
; :::; (xn;yn)

�
a meta-sample

(X;Y) � �̂n iid draw of meta-sample in n trials of �̂ 2.4



27

w (x;y) weight computed by algorithm w from (x;y) 2.2
` loss function ` : R� [0; 1]! R+ 2
`sqr square loss `sqr (y0; y) = (y0 � y)2 2
^̀
w (x;y) empirical loss of algorithm w on (x;y) 2.2

^̀
w (x;y) = (1=m)

Pm
i=1 ` (hw (x;y) ; xii ; yi)

R� (w) transfer risk of algorithm w in environment � 2.4
= E���E(x;y)��mE(x;y)��` (hw (x;y) ; xi ; y)

wD for D 2 L+ (H) 2.3
the algorithm w using D1=2 as a preprocessor
wD (x;y) = D

1=2w
�
D1=2x;y

�
D a generic subset D � L+ (H) 2.3

kDkp sup
n
kDkp : D 2 D

o
! regularized least squares: 2.2,5

argminw2H (1=m)
P

i (hw; xii � yi)
2
+ kwk2

� minimal objective for ! 5

�; �i independent random var�s, uniform on f�1; 1g 3.2
; i; 

l
ij independent random var�s, N (0; 1)-distributed 3.2

R (A) Rademacher average of A � Rk 3.2
� (A) Gaussian average of A � Rk 3.2
F generic function class on a space X
F (x) The set f(f (x1) ; :::; f (xk)) : f 2 Fg � Rk 3.2


