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Abstract. A simple bound is presented for the probability that the sum of
nonnegative independent random variables is exceeded by its expectation by
more than a positive number t. If the variables have the same expectation the
bound is slightly weaker than the Bennett and Bernstein inequalities, otherwise
it can be signi�cantly stronger. The inequality extends to one-sidedly bounded
martingale di¤erence sequences.

1. Introduction

Suppose that the fXigmi=1 are independent random variables with �nite �rst and
second moments and use the notation S :=

P
iXi. Let t > 0. This note discusses

the inequality

(1.1) Pr fE [S]� S � tg � exp
�

�t2
2
P

iE [X
2
i ]

�
;

valid under the assumption that the Xi are non-negative.

Similar bounds have a history beginning in the nineteenth century with the

results of Bienaymé and Chebyshev ([3]). Set �2 = (1=m)
P

i

�
E
�
X2
i

�
� (E [Xi])2

�
.

The inequality

Pr fjE [S]� Sj � m�g � �2

m�2

requires minimal assumptions on the distributions of the individual variables and, if
applied to identically distributed variables, establishes the consistency of the theory
of probability: If the Xi represent the numerical results of independent repetitions
of some experiment, then the probability that the average result deviates from its
expectation by more than a value of � decreases to zero as as �2=

�
m�2

�
, where �2

is the average variance of the Xi.
If the Xi satisfy some additional boundedness conditions the deviation probabili-

ties can be shown to decrease exponentially. Corresponding results were obtained in
the middle of the twentieth century by Bernstein [2], Cramér, Cherno¤ [4], Bennett
[1] and Hoe¤ding [7]. Their results, summarized in [7], have since found impor-
tant applications in statistics, operations research and computer science (see [6]).
A general method of proof, sometimes called the exponential moment method, is
explained in [10] and [8].
Inequality (1.1) is of a similar nature and can be directly compared to one-sided

versions of Bernstein�s and Bennett�s inequalities (see theorem 3 in [7]) which also
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require the Xi to be bounded on only one side. It turns out that, once reformulated
for non-negative variables, the classical inequalities are stronger than (1.1) if the
Xi are similar in the sense that their expectations are uniformly concentrated. If
the expectations of the individual variables are very scattered and/or for large
deviations t our inequality (1.1) becomes stronger.
Apart from being stronger than Bernstein�s theorem under perhaps somewhat

extreme circumstances, the new inequality (1.1) appears attractive because of its
simplicity. The proof (suggested by Colin McDiarmid) is very easy and direct
and the method also gives a concentration inequality for martingales of one-sidedly
bounded di¤erences.

In section (2) we give a �rst proof of (1.1) and list some simple consequences.
In section (3) our result is compared to Bernstein�s inequality, in section (4) it is
extended to martingales. All random variables below are assumed to be members
of the algebra of measurable functions de�ned on some probability space (
;�; �).
Order and equality in this algebra are assumed to hold only almost everywhere
w.r.t. �, i.e. X � 0 means X � 0 almost everywhere w.r.t. � on 
.

2. Statement and Proof of the Main Result

Theorem 1. Let the fXigmi=1 be independent random variables, E
�
X2
i

�
< 1,

Xi � 0 . Set S =
P

iXi and let t > 0. Then

(2.1) Pr fE [S]� S � tg � exp
�

�t2
2
P

iE [X
2
i ]

�
:

Proof. We �rst claim that for x � 0

e�x � 1� x+ 1
2
x2:

To see this let f(x) = e�x and g (x) = 1 � x + (1=2)x2 and recall that for every
real x

(2.2) ex � 1 + x
so that f 0(x) = �e�x � �1 + x = g0 (x). Since f (0) = 1 = g (0) this implies
f (x) � g (x) for all x � 0, as claimed.

It follows that for any i 2 f1; :::;mg and any � � 0 we have

E
�
e��Xi

�
� 1� �E [Xi] +

�2

2
E
�
X2
i

�
� exp

�
��E [Xi] +

�2

2
E
�
X2
i

��
where (2.2) was used again in the second inequality. This establishes the bound

(2.3) lnE
�
e��Xi

�
� ��E [Xi] +

�2

2
E
�
X2
i

�
.

Using the independence of the Xi this implies

lnE
�
e��S

�
= ln

Y
i

E
�
e��Xi

�
=
X
i

lnE
�
e��Xi

�
� ��E [S] + �

2

2

X
i

E
�
X2
i

�
:(2.4)
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Let � be the characteristic function of [0;1). Then for any � � 0, x 2 R we must
have � (x) � exp (�x) so using (2.4)

ln Pr fE [S]� S � tg = lnE [� (�t+ E [S]� S)]
� lnE [exp (� (�t+ E [S]� S))]
= ��t+ �E [S] + lnE

�
e��S

�
� ��t+ �

2

2

X
i

E
�
X2
i

�
:

We minimize the last expression with � = t=
P

iE
�
X2
i

�
� 0 to obtain

ln Pr fE [S]� S � tg � �t2
2
P

iE [X
2
i ]

which implies (2.1). �

Some immediate and obvious consequences are given in

Corollary 1. Let the fXigmi=1 be independent random variables, E
�
X2
i

�
< 1 .

Set S =
P

iXi and let t > 0.

(1) If Xi � bi and set �2i = E
�
X2
i

�
� (E [Xi])2 then

Pr fS � E [S] � tg � exp
 

�t2

2
P

i �
2
i + 2

P
i (bi � E [Xi])

2

!
:

(2) If 0 � Xi � bi then

Pr fE [S]� S � tg � exp
�

�t2
2
P

i biE [Xi]

�
:

(3) If 0 � Xi � bi then

Pr fE [S]� S � tg � exp
�

�t2
2
P

i b
2
i

�
Proof. (1) follow from application of Theorem 1 to the random variables Yi = bi�Xi
since

2
X

E
�
Y 2i
�
= 2

X�
E
�
X2
i

�
� E [Xi]2 + E [Xi]2 � 2biE [Xi] + b2i

�
= 2

X
i

�2i + 2
X
i

(bi � E [Xi])2

while (2) is immediate from Theorem 1 and (3) follows trivially from (2). �

3. Comparison to Other Bounds

Observe that part (3) of Corollary 1 is similar to the familiar Hoe¤ding inequal-
ity (Theorem 2 in [7]) but weaker by a factor of 4 in the exponent. If there is
information on the expectations of the Xi and E [Xi] � bi=4 then (2) of Corollary
1 becomes stronger than Hoe¤ding�s inequality. If the bi are all equal then (2) is
weaker than what we get from the relative-entropy Cherno¤ bound (Theorem 1 in
[7]).
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It is natural to compare our result to Bernstein�s theorem which also requires
only one-sided boundedness. We state a corresponding version of the theorem (see
[1]or[10] or [9])

Theorem 2 (Bernstein�s Inequality). Let fXigmi=1 be independent random variables
with Xi � E [Xi] � d for all i 2 f1; :::;mg. Let S =

P
Xi and t > 0. Then, with

�2i = E
�
X2
i

�
� E [Xi]2 we have

(3.1) Pr fS � E [S] � tg � exp
�

�t2
2
P

i �
2
i + 2td=3

�
:

Now suppose we know Xi � bi for all i. In this case we can apply part (1) of
corollary 1. On the other hand if we set d = maxi (bi � E [Xi]) then Xi�E [Xi] � d
for all i and we can apply Bernstein�s theorem as well. The latter is evidently tighter
than part (1) of corollary 1 if and only if

t

3
max
i
(bi � E [Xi]) <

X
i

(bi � E [Xi])2 .

We introduce the abbreviations B1 = maxi (bi � E [Xi]), B1 =
P

i (bi � E [Xi])
and B2 =

P
i (bi � E [Xi])

2. Both results are trivial unless t < B1. Assume
t = �B1, where 0 < � < 1. Then Bernstein�s theorem is stronger in the interval

0 < � <
3B2
B1B1

,

which is never empty. The new inequality is stronger in the interval

3B2
B1B1

< � < 1:

The latter interval may be empty in which case Bernstein�s inequality is stronger
for all nontrivial deviations �. This is clearly the case if all the bi�E [Xi] are equal,
for then B2= (B1B1) = 1. This happens for example if the Xi are identically
distributed. That the new inequality can be stronger in a signi�cant range of
deviations can be seen if we set E [Xi] = 0 and bi = 1=i for i 2 f1; :::;mg. Then

3B2
B1B1

<
�2

2
Pm

i=1 (1=i)
! 0 as m!1.

In this case for every given deviation � the new inequality becomes stronger for
su¢ ciently large m:

To summarize this comparison: If the deviation is small and/or the individual
variables have a rather uniform behaviour then Bernstein�s inequality is stronger,
otherwise weaker than the new result. A similar analysis applies to the stronger
Bennett inequality and the yet stronger Theorem 3 in [7]: In all these cases a single
uniform bound on the variables Xi�E [Xi] enters into the bound on the deviation
probability.

4. Martingales

The key to the proof of Theorem 1 lies in inequality (2.3):

X � 0, � � 0 =) lnE
�
e��X

�
� ��E [X] + �

2

2
E
�
X2
�
.
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Apart from the inequality e�x � 1�x+(1=2)x2 (for non-negative x) its derivation
uses only monotonicity, linearity and normalization of the expectation value. It
therefore also applies to conditional expectations.

Lemma 1. Let X,W be random variables, W not necessarily real valued, � � 0..
(1) If X � 0 then

lnE
�
e��X jW

�
� ��E [XjW ] + �

2

2
E
�
X2jW

�
:

(2) If X � b and E [XjW ] = 0 and E
�
X2jW

�
� �2 then

lnE
�
e�X jW

�
� �2

2

�
�2 + b2

�
Proof. To see part 1 retrace the �rst part of the proof of Theorem 1. Part 2 follows
from applying part 1 to Y = b�X to get

lnE
�
e�X jW

�
= �b+ lnE

�
e��Y jW

�
� �b� �E [Y jW ] + �

2

2
E
�
Y 2jW

�
=

�2

2
E
�
Y 2jW

�
=
�2

2

�
E
�
X2jW

�
+ b2

�
�

Part (2) of this lemma gives a concentration inequality for martingales of one-
sidedly bounded di¤erences, with less restrictive assumptions than [5], Corollary
2.4.7.

Theorem 3. Let Xi be random variables , Sn =
Pn

i=1Xi, S0 = 0. Suppose that
bi; �i > 0 and that E [XnjSn�1] = 0, E

�
X2
njSn�1

�
� �2n and Xn � bn. Then, for

� � 0,

(4.1) lnE
�
e�Sn

�
� �2

2

nX
i=1

�
�2i + b

2
i

�
and for t > 0,

(4.2) Pr fSn � tg � exp
�

�t2
2
Pn

i=1 (�
2
i + b

2
i )

�
:

Proof. We prove (4.1) by induction on n. The case n = 1 is just part (2) of the
lemma with W = 0. Assume that (4.1) holds for a given value of n. If �n is the
�-algebra generated by Sn then e�Sn is �n-measurable, so

E
�
e�Sn+1 jSn

�
= E

�
e�Sne�Xn+1 jSn

�
= e�SnE

�
e�Xn+1 jSn

�
almost surely. Thus

lnE
�
e�Sn+1

�
= lnE

�
E
�
e�Sn+1 jSn

��
= lnE

�
e�SnE

�
e�Xn+1 jSn

��
� lnE

�
e�Sn

�
+
�2

2

�
�2n+1 + b

2
n+1

�
(4.3)

� �2

2

n+1X
i=1

�
�2i + b

2
i

�
;(4.4)
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where Lemma 1, part 2 was used to get (4.3) and the induction hypothesis was
used for (4.4).
To get (4.2) we proceed as in the proof of Theorem 1: For � � 0

lnPr fSn � tg � lnE
h
e�(Sn�t)

i
� ��t+ �

2

2

nX
i=1

�
�2i + b

2
i

�
:

Minimizing the last expression with � = t=
P�

�2i + b
2
i

�
gives (4.2). �

5. Conclusion

It remains to be seen if our inequality has any interesting practical implications.
In view of the comparison to Bernstein�s theorem this would have to be in a situation
where the random variables considered have a highly non-uniform behaviour and
the deviations to which the result is applied are large. Apart from its potential
utility the new inequality may have some didactical value due to its simplicity.
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