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Abstract. We present a method which uses example pairs of equal or
unequal class labels to select a subspace with near optimal metric prop-
erties in a kernel-induced Hilbert space. A representation of �nite dimen-
sional projections as bounded linear functionals on a space of Hilbert-
Schmidt operators leads to PAC-type performance guarantees for the
resulting feature maps. The proposed algorithm returns the projection
onto the span of the principal eigenvectors of an empirical operator
constructed in terms of the example pairs. It can be applied to meta-
learning environments and experiments demonstrate an e¤ective transfer
of knowledge between di¤erent but related learning tasks.

1 Introduction

Humans can use the experience accumulated during previous learning e¤orts to
learn novel but related tasks more e¢ ciently, often generalizing well on the basis
of a single training example (see e.g. [13]).
Here we present a machine learning algorithm designed to imitate aspects

of this behaviour. It attempts to represent input data in a Euclidean space,
such that the metric relations between the represented data points match se-
mantic relations of their class labels. The most elementary semantic relations
are equality and inequality, often called equivalence constraints, and matching
these means that pairs of equally labelled input points should be mapped close
to each other, while pairs of di¤erently labelled points should be separated. To
train the representing feature map such equivalence constraints can be sampled
from environments encompassing many individual learning tasks. If the semantic
match is good on the training data and the feature map generalizes well, then
we can expect that for any - possibly novel - learning task in the environment,
a classi�er thresholding the distance to a single training example will have good
performance.

Similar methods have received some attention recently, both from the per-
spective of machine learning ([16],[3]) and cognitive science ([6]). Our approach
is motivated by a distribution-independent analysis of the generalization perfor-
mance of elementary classi�ers in a meta-learning environment. The proposed
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algorithm is a subspace selection technique which can be regarded as a hyperbolic
extension of PCA. It utilizes both positive (equal labels) and negative (di¤erent
labels) equivalence constraints.
The method has been tested in various domains of image recognition: Hand-

written characters, rotation and scale invariant character recognition and the
recognition of human faces. In all these cases the representations trained on
one learning task resulted in a considerable performance improvement for small-
sample nearest neighbour classi�ers on related tasks.

The next section introduces metric threshold classi�ers and corresponding
risk functionals for general metric representations. Section 3 presents a proba-
bilistic model for the generation of equivalence constraints. Section 4 specializes
to the representations considered by our algorithm and gives a high probability
generalization guarantee in terms of the empirical properties of a representation.
Section 5 is devoted to the proof of this theorem and section 6 discusses some
details of our algorithm. Some experimental results are presented in section 7.

2 Risk functionals for metric representations

Suppose that E is an environment of learning tasks with common input space
X (see Baxter [4]). This means that E is a probability distribution on a space
of learning tasks f(Y; �)g ; where each Y is an alphabet of labels, and each � is
a probability distribution on X � Y, � (x; y) being the probability to encounter
the pattern x carrying the label y in the context of the task (Y; �).
We now de�ne a performance measure for metric representations of X in

terms of the expected performance of elementary threshold classi�ers. Suppose
� : X ! � (X ) is such a representation in a metric space (� (X ) ; d), where
we assume the diameter of � (X ) to be bounded by 1. Consider a learning task
(Y; �) and a single training example (x; y) 2 X � Y. A classi�er trained on this
example alone and applied to another pattern x0 2 X can sensibly only make
the decisions "x0 is of type y" or "x0 is not of type y" or no decision at all. Face
recognition is an environment where such classi�ers can be quite important in
practice: A police o¢ cer having to verify the identity of a person on the basis of
a single passport photograph has to learn and generalize on the basis of a single
example image. A simple classi�er using only the metric representation is the
threshold classi�er �c (x; y) which decides

x0 is of type y if d (� (x) ; � (x0)) < c
undecided if d (� (x) ; � (x0)) = c

x0 is not of type y if d (� (x) ; � (x0)) > c
;

where c is some distance threshold c 2 (0; 1). Relative to the task (Y; �) this
classi�er has the error probability (counting �undecided�as an error)

err (�c (x; y)) = Pr
(x0;y0)��

frY (y; y0) (c� d (� (x) ; � (x0))) � 0g ;
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where the function rY : Y � Y ! f0; 1g quanti�es equality and inequality in Y:

rY (y; y
0) =

�
1 if y = y0

�1 if y 6= y0
:

The expected value of err(�c (x; y)), as a task (Y; �) is selected randomly from
the environment E and a training example (x; y) is chosen from �, is

R (�; c; E) = E(Y;�)�E
�
E(x;y)��

�
Pr

(x0;y0)��
frY (y; y0) (c� d (� (x) ; � (x0))) � 0g

��
The quantity R (�; c; E) is a measure of the risk associated with the metric
representation �, the assumed threshold c and the environment E . Optimization
with respect to c gives the threshold independent risk functional1

R (�; E) = inf
c2(0;1)

R (�; c; E) : (1)

Our algorithm will seek a metric representation � with a small value of
R (�; E) where � (X ) is isometrically embedded in Rd. Any bound on R (�; E)
is then also a bound on the expected error of threshold classi�ers. This is the
theoretical justi�cation of the risk functional R, but it does not imply that we
are constrained to use the simple and functionally limited threshold classi�ers:
Any machine learning algorithm applicable to labelled vectors in Rd (e.g. NN or
SVM) can be used on the data which has been preprocessed by �.

3 Equivalence constraints

A triplet (x; x0; r) 2 X 2 � f�1; 1g is called an equivalence constraint ([3],[6]).
Given an environment E we de�ne a probability measure �E on X 2�f�1; 1g by
the formula

�E (A) = E(Y;�)�E
�

Pr
((x;y);(x0;y0))��2

f(x; x0; rY (y; y0)) 2 Ag
�
for A � X 2�f�1; 1g .

To draw an equivalence constraint (x; x0; r) from �E we �rst draw a task (Y; �)
from E , and then make two independent draws from � to generate the pair
((x; y) ; (x0; y0)) 2 (X � Y)2. If y = y0 we set r = 1 else we set r = �1. We then
have

R (�; c; E) = Pr
(x;x0;r)��E

fr (c� d (� (x) ; � (x0))) � 0g : (2)

The measure �E is itself unknown to our algorithm, which instead has to rely
on a training sample S = ((x1; x

0
1; r1) ; :::; (xm; x

0
m; rm)) 2

�
X 2 � f�1; 1g

�m
of

m equivalence constraints generated in m independent, identical trials of �E
according to the above procedure, i.e. S � (�E)

m.

1 If �undecided�was not counted as an error, this in�mum would always be attained
for some distance threshold c� 2 [0; 1], which can be regarded as a granularity of the
metric representation.
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The speci�c way in which the measure �E was generated served to derive and
motivate the risk functional R and is otherwise irrelevant to most of our analysis.
We only require a probability measure � on X 2 � f�1; 1g and risk functionals
R as de�ned by (2) and (1). There are other interesting ways to generate such
measures: As pointed out by Bar-Hillel et al ([3]), equivalence constraints can
be generated in an unsupervised way by observing a video sequence, regarding
image pairs taken at similar times as positive and pairs at very di¤erent times
as negative constraints. We will therefore axiomatically postulate the existence
of the measure �, dropping the subscript which indicated the dependence on the
environment E . We also write R (�; c; E) = R (�; c; �E) and R (�; E) = R (�; �E).

Another important issue here is balancing. If the alphabets in E are large,
with their symbols appearing approximately equally likely, then negative equiv-
alence constraints will be sampled much more frequently than positive ones,
resulting in a negative bias of elementary classi�ers. This unwanted e¤ect has
been noted in [16] and [3]. A simple remedy is to de�ne a new measure ��E by

��E (A) =
�E (A \ f1g)
2�E (X \ f1g) +

�E (A \ f�1g)
2�E (X \ f�1g) for A � X

2:

Then positive and negative equivalence constraints occur equally likely as mea-
sured by ��. The risk R (�; c; ��E) relative to ��E is often more relevant than
R (�; c; �E). Since our bounds will be valid for any probability measure � on
X 2 � f�1; 1g they will also work with ��E as long as we remember that the
training sample S is also drawn from the modi�ed measure S � (��E)

m.

4 Generalization bounds for subspace selection

Our technique is related to kernel-PCA (see [10], [14]): It requires some �xed
map  : X ! H to embed the input data in a Hilbert space H. In practice the
embedding  is realized by a positive de�nite kernel � on the input space which
maps onto the inner product h:; :i in the Hilbert space H (see [5]). For our results
we generally require k (x)�  (x0)k � 1 for all inputs x and x0, and we assume
H to be in�nite dimensional. On the basis of the training set S a d-dimensional
orthogonal projection P on H is selected. The combined map of embedding and
projection � = P �  is then used as a metric representation for future data.
Since  is �xed and P is completely determined by its range, our algorithm can
also be considered a subspace selection technique.

In the following we �x the Hilbert space H and simply write x instead of
 (x), identifying X with its image  (X ) � H under the kernel-map. When
we discuss details of our algorithm we bring  back into play. It is crucial that
diam(X ) � 1.
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For subspace selection the risk functionals in (2) and (1), which now depend
on the projection P , read as

R (P; c; �) = Pr
(x;x0;r)s�

fr (c� kP (x� x0)k) � 0g

R (P; �) = inf
c2(0;1)

R (P; c; �) :

To write down a sample dependent bound on R we introduce for  > 0 the
margin functions

f (t) =

8<: 1 if t � 0
1� t= if 0 < t < 
0 if  � t

and the empirical margin error R̂ for a sample S = ((x1; x01; r1) ; :::; (xm; x
0
m; rm)) 2�

X 2 � f�1; 1g
�m
, a threshold c > 0 and a d-dimensional projection P

R̂ (P; c; S) =
1

m

mX
i=1

f

�
ri

�
c2 � kP (xi � x0i)k

2
��

:

Recent results on large margin classi�ers (Kolchinskii and Panchenko [7], Bartlett
and Mendelson [1]), combined with a reformulation in terms of Hilbert-Schmidt
operators give the following:

Theorem 1. Fix  > 0. For every � > 0 we have with probability greater than
1� � in a sample S drawn from �m, that for every d-dimensional projection P

R (P; �) � inf
c2(0;1)

R̂ (P; c; S) +
1p
m

0@2
�p

d+ 1
�


+

r
ln (1=�)

2

1A :

In addition to the empirical error the bound shows an estimation error, de-
creasing as 1=

p
m which is usual for this type of bound. The estimation error

contains two terms: The customary dependence on the con�dence parameter �
and a complexity penalty consisting of 1= (really the Lipschitz constant of the
margin function f), and the penalty

p
d on the dimension of the representing

projection.
We will outline a proof of a more general version of this theorem in the next

section.

5 Operator-valued linear large-margin classi�ers

In this section we rewrite �nite dimensional projections and more general feature
maps as operator valued large-margin classi�ers, and use this formulation to
prove a more general version of Theorem 1. We will use the following general
result on linear large margin classi�ers (Kolchinskii and Panchenko [7], Bartlett
and Mendelson [1]):



6

Theorem 2. Let (
;�) be a probability space, H a Hilbert space with unit ball
B1 (H) and (w; y) : 
 ! B1 (H)� f�1; 1g a random variable.
Let � � H be a set of vectors and write

B� = sup
v2�

kvk and C� = sup
v2�;!2


jhw (!) ; vij :

Fix ; � 2 (0; 1). Then with probability greater than 1 � � in S = (!1; :::; !m)
drawn from �m we have for every v 2 � and every t with jtj � C�

Pr
!��

fy (!) (hw (!) ; vi � t) � 0g

� 1

m

mX
i=1

f (y (!i) (hw (!i) ; vi � t)) +
1p
m

 
2 (B� + C�)


+

r
ln (1=�)

2

!
:

The theorem as stated has an improved margin dependent term by a factor
of 2 over the results in [1]. This results from using a slightly di¤erent de�nition
of Rademacher complexity with a correspondingly improved bound on the com-
plexity of function classes obtained from compositions with Lipschitz functions
(Theorem A6 in [2]).

For a �xed Hilbert space H we now de�ne a second Hilbert space consist-
ing of Hilbert-Schmidt operators. With HS we denote the real vector space of
symmetric operators on H satisfying

P1
i=1 kTeik

2 � 1 for every orthonormal
basis (ei)

1
i=1 of H. For S; T 2 HS and an orthonormal basis (ei) the seriesP

i hSei; T eii is absolutely summable and independent of the chosen basis. The
number hS; T iHS =

P
hSei; T eii de�nes an inner product on HS, making it into

a Hilbert space. We denote the corresponding norm with k:kHS (see Reed and
Simon [12] for background on functional analysis).
We use HS+ to denote the set of positive Hilbert-Schmidt operators,

HS+ = fT 2 HS : hTv; vi � 0 for all v 2 Hg .

Then HS+ is a closed convex cone in HS. Every T 2 HS+ has a unique positive
squareroot, which is a bounded operator T 1=2 (in fact T 1=2 2 HS+) such that
T = T 1=2T 1=2.
For every v 2 H we de�ne an operator Qv by Qvw = hw; vi v. For v 6= 0

chose an orthonormal basis (ei)
1
1 , so that e1 = v= kvk. Then

kQvk2HS =
X
i

kQveik2 = kQvvk2 = kvk2 = kvk4 ;

so Qv 2 HS+ and kQvkHS = kvk
2. With the same basis we have for any T 2 HS

hT;QviHS =
X
i

hTei; Qveii = hTv;Qvvi = kvk2 = hTv; vi :

For T 2 HS+ we then have

hT;QviHS =
T 1=2v2 . (3)
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The set of d-dimensional, orthogonal projections in H is denoted with Pd. We
have Pd � HS+ and if P 2 Pd then kPkHS =

p
d and P 1=2 = P .

Consider the feature map given by the operator T 1=2, where T is any operator
in HS+ (this corresponds to the metric d (:; :)T considered in [16]). Its threshold
dependent risk is

R
�
T 1=2; c; �

�
= Pr

(x;x0;r)s�

�
r

�
c2 �

T 1=2 (x� x0)2� � 0�
= Pr

(x;x0;r)s�

�
r
�
c2 � hT;Qx�x0iHS

�
� 0
	
;

where we used the key formula (3). For a margin  > 0 and a sample S =
((x1; x

0
1; r1) ; :::; (xm; x

0
m; rm)) we de�ne the empirical margin-error

R̂

�
T 1=2; c; S

�
=
1

m

mX
i=1

f

�
ri

�
c2 �

T 1=2 (xi � x0i)2��

=
1

m

mX
i=1

f

�
ri

�
c2 �



T;Qxi�x0i

�
HS

��
:

It is clear that the de�nitions of R and R̂ coincide with those used in Theorem
1 when P is a �nite dimensional orthogonal projection. These de�nitions are
also analogous to the risk and empirical margin errors for classi�ers obtained by
thresholding bounded linear functionals as in Theorem 2. This leads to

Theorem 3. Let T be some class of positive symmetric linear operators on H
and denote2

kT kHS = sup
T2T

kTkHS and kT k1 = sup
T2T

kTk1 :

Fix  > 0. Then for every � > 0 we have with probability greater than 1 � � in

a sample S � �m, that for every T 2 T and every c 2
�
0; kT k1=21

�
R
�
T 1=2; c; �

�
� R̂

�
T 1=2; c; S

�
+

1p
m

 
2 (kT kHS + kT k1)


+

r
ln (1=�)

2

!
:

Theorem 1 follows immediately from setting T = Pd, since kPdkHS =
p
d

and kPdk1 = 1.

Proof. Note that for (x; x0; r) in the support of � we have kQx�x0kHS = kx� x0k
2 �

1, so we can apply Theorem 2 with 
 = X 2�f�1; 1g, � = �, H = HS,
w (x; x0; r) = �Qx�x0 , and y (x; x0; r) = r and � = T . Then B� = kT kHS
and C� � kT k1. Substitution of the expressions for R and R̂ in the bound of
Theorem 2 gives Theorem 3.�
2 Here kTk1 = supkvk=1 kTvk is the usual operator norm (see [12]).
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6 Hyperbolic PCA

Fix a margin  and a training sample S = ((x1; x
0
1; r1) ; :::; (xm; x

0
m; rm)) of

equivalence constraints. Since there are no other sample dependent terms in the
bound of Theorem 1, we should in principle minimize the empirical margin-error

R̂ (P; c; S) =
1

m

mX
i=1

f

�
ri

�
c2 �



P;Qxi�x0i

�
HS

��
:

over all choices of c 2 (0; 1) and P 2 Pd, to obtain a (nearly) optimal projection
P � together with some clustering granularity c�.
This algorithm is di¢ cult to implement in practice. One obstacle is the non-

linearity of the margin functions f . Replacing the f by the convex hinge-loss
does not help, because the set of d-dimensional projections itself fails to be con-
vex. Replacing the set Pd of candidate maps by the set of positive operators
with a uniform bound B on their Hilbert-Schmidt norms and replacing the f
by any convex function such as the hinge-loss results in a convex optimization
problem. Its solution would be the most direct way to exploit Theorem 3 (tak-
ing us outside the domain of subspace selection). A major di¢ culty here is the
positivity constraint on the operators chosen. It can be handled by a gradient-
descent/projection technique as in [16], but this is computationally expensive,
necessitating an eigen-decomposition at every projection step.

Here we take a di¤erent path, remaining in the domain of subspace selection.
Fix c 2 (0; 1) and  > 0 and for i 2 f�1; 1g de�ne numbers �i by ��1 =

min
n

1
1�c2 ;

1


o
and �1 = �min

n
1
c2 ;

1


o
. De�ne the empirical operator T̂ (�; S)

by

T̂ (�; S) =
1

m

mX
i=1

�riQxi�x0i .

Then

R̂ (P; c; S) �
1

m

mX
i=1

�
1 + �ri

�
c2 �



Qxi�x0i ; P

�
HS

��
= 1 +

c2

m

mX
i=1

�ri �
D
T̂ (�; S) ; P

E
HS

:

The right hand side above is the smallest functional dominating R̂ and a¢ ne in

theQxi�x0i . Minimizing it over P 2 Pd is equivalent to maximizing
D
T̂ (�; S) ; P

E
HS

and constitutes the core step of our algorithm where it is used to generate can-
didate pairs (P; c) to be tried in the bound of Theorem 1, leading to a heuristic
minimization of R̂ (P; c; S) for di¤erent values of c 2 (0; 1). Current work seeks
to replace this heuristic by a more systematic boosting scheme.
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Maximization of
D
T̂ (�; S) ; P

E
HS

is carried out by solving the eigenvalue

problem for T̂ and taking for P the projection onto the span of the d eigenvectors
corresponding to the largest eigenvalues of T̂ . This is similar to the situation for
PCA, where the empirical operator approximating the covariance operator is

Ĉ (S) =
1

m

mX
i=1

Qxi

and the xi are the points of an unlabeled sample. The essential di¤erence to
PCA is that while Ĉ is a positive operator, the operator T̂ is not, and it can
have negative eigenvalues. The in�nite dimensionality of H and the �nite rank of
T̂ ensure that there is a su¢ cient supply of eigenvectors with nonnegative eigen-
values. Nevertheless, while the level sets of the quadratic form de�ned by Ĉ are
always ellipsoids, those of T̂ are hyperboloids in general, due to the contributions
of positive equivalence constraints. In a world of acronyms our algorithm should
therefore be called HPCA, for hyperbolic principal component analysis. If there
are only negative equivalence constraints our algorithm is essentially equivalent
to PCA.

To describe in more detail how the method works, we put the kernel map  
back into the formulation. The empirical operator then reads

T̂ (�; S) =
1

m

mX
i=1

�riQ (xi)� (x0i)
.

Clearly an eigenvector w of T̂ must be in the span of the f (xi)�  (x0i)g
m
i=1,

so we can write

w =
mX
i=1

�i ( (xi)�  (x0i)) : (4)

Substitution in the equation T̂ (�; S)w = �w and taking inner product with�
 (xj)�  

�
x0j
��
gives the generalized matrix-eigenvalue problem

�D�� = ���

�ij =


 (xi)�  (x0i) ;  (xj)�  

�
x0j
��

Dij = �ri�ij :

Evidently all these quantities can be computed from the kernel matrix h (xi) ;  (xj)i.
The d solutions �k = (�i)k corresponding to the largest eigenvalues � are sub-
stituted in (4), the resulting vectors wk are normalized and the projection corre-
sponding to largest eigenvalues is computed. Notice how this algorithm resembles
PCA if there are only negative equivalence constraints, because then D becomes
the identity matrix.

There is an interesting variant of this method, which is useful in prac-
tice even though it does not completely �t the probabilistic framework de-
scribed above. Suppose we are given an ordinary sample of labelled data S =
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((x1; y1) ; :::; (xm; ym)) and we want to exploit all the equivalence constraints im-

plied by S, that is to maximize
D
T̂
�
�; S(2)

�
; P
E
HS

with S(2) = ((xi; xj ; r (yi; yj)))i 6=j .

One might be led to think that this would require solving the eigenvalue problem
of an m2 �m2-matrix, which would be of order m6, making it computationally
impractical even for moderate sample sizes. The problem may however be re-
duced to the eigenvalue problem of an m�m-matrix, thus of order m3:
The empirical operator now reads (with rij = r (yi; yj))

T̂
�
�; S(2)

�
=

1

m2

mX
i;j=1

�rijQ (xi)� (xj):

Substituting an eigenvector w =
Pm

1 k (xk) in the eigenvalue-equation and
taking the inner product with some  (xl), and using the fact that the matrix
aij = �rij=m

2 is symmetric we get

�
mX
k=1

k h (xk) ;  (xl)i

=
1

m2

mX
i;j=1

�rij


Q (xi)� (xj)w; (xl)

�
=

mX
k=1

k

mX
i;j=1

aij h (xk) ;  (xi)�  (xj)i h (xi)�  (xj) ;  (xl)i

= 2
mX
k=1

k

mX
ij=1

 
�ij

mX
n=1

ain � aij

!
h (xk) ;  (xi)i h (xj) ;  (xl)i :

Using G to denote the ordinary Gramian or kernel-matrix Gij = h (xi) ;  (xj)i
we again obtain a generalized m�m eigenvalue problem

GAG = �G:

A is not diagonal in this case, but given by the symmetric matrix

Aij = 2

 
�ij

mX
n=1

ain � aij

!
=

2

m2

 
�ij

mX
n=1

�rin � �rij

!
:

The sample S(2) does not �t into our probabilistic framework, because it has not
been generated by m2 independent draws of equivalence constraints, in fact only
O (m) of the pairs in S0 can be independent. We nevertheless used this variant
of the algorithm to exploit all the information in the training samples for the
experiments reported below. The worst possible e¤ect of the use of S(2) is that
the number m2 of equivalence constraints must be replaced by m in our bounds.
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7 Experiments

The experiments are designed to test the transfer capabilities of our subspace
selection algorithm: We use the data of one set of learning tasks to train a
projection, and then check how it facilitates the learning of a new and unknown
task.
In practice we take a sample S from a single multiclass learning task with

alphabet Y (this could easily be extended to a collection of tasks) and employ
the algorithm described at the end of the previous section to generate projections
from all the equivalence constraints implied by S for di¤erent values �1and ��1,
selecting the projection P � giving the smallest empirical risk R̂0:01

�
P �; S(2)

�
.

The optimal values are reported below for each experiment3 . Here the balanced
version of the risk is used to eliminate the e¤ects of alphabet-sizes.
The projection P � is applied to a target task (with alphabet Y 0) for which a

test-sample S0 is available. The empirical distribution of S0 is used to estimate
the balanced risk R� of P � in the new task (reported below for each case, together
with the optimal distance threshold c�). In addition the feature map is tested
with nearest neighbour classi�cation: From S0 a single example per class is chosen
as training data for a nearest neighbour classi�er and the error rate of this
classi�er is recorded for both the metric induced by the feature map (projected
data) and the original Euclidean metric on normalized pixel vectors (raw data).
This experiment is repeated over all possible choices of training data (in the
manner of a leave-(n� 1)-out test) and the resulting error rates are reported.
The pixel vectors were normalized to unit length. The raw data below already

refers to these unit vectors. The embedding  was realized by the RBF-kernel

� (x; y) = 2�1 exp
�
�C jx� yj2

�
, with C = 16 for the handwritten digits and

C = 8 in all other cases 4 . Note that the normalization of the kernel is chosen
to bound the diameter of the embedded input vectors by 1, as required by our
bounds.

We tried �ve learning environments, two realistic ones involving handwritten
characters and face recognition, and three slightly arti�cial ones de�ned by the
respective invariances of rotation, scaling and combined rotation and scaling.
For handwritten characters we used images of upper and lower case letters

in the NIST database to train P �, and a subset of the MNIST database of digits
for testing. For face recognition we used the images of 31 subjects in the AT&T
Face-Database for training and the remaining 9 subjects for testing.
For rotation invariant character recognition randomly rotated images of printed

lower case letters were used for training, randomly rotated images of printed
digits (with �9� omitted) for testing. For scale invariant character recognition
randomly scaled (from 50% to 150%) images of printed capitals and lowercase

3 Theorem 1 overestimates the estimation error. This is why a small value for  is
chosen, even though this may make the bound of Theorem 1 trivial.

4 Here and in the de�nition of the kernel j:j refers to the euclidean norm of the pixel
vectors.
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letters were used for training, randomly scaled images of printed digits for test-
ing. For combined rotation and scale invariant character recognition the images
in the rotation invariant dataset were also randomly scaled (from 50% to 150%).
Again the projection was trained from the letters and tested with digits. The
following table summarizes the results of these experiments:

handw.
chars

faces
rotated
chars

scaled
chars

rotated
+scaled
chars

jYj (Training task) 52 31 20 44 20
jSj 4160 310 2000 1320 4000

jY 0j (Testing task) 10 9 9 10 9
jS0j 500 90 900 300 1800

d =dim(P �) 24 20 18 24 18
��1 (�1 = 1, balanced) 0.052 0.016 0.019 0.22 0.19

R� balanced 0.188 0.05 0.022 0.02 0.068
c� (balanced) 0.26 0.45 0.3 0.36 0.25

1-NNError on raw data 0.549 0.116 0.716 0.472 0.803
1-NNError on projected data 0.318 0.043 0.014 0.008 0.072

Table 1. Summary of experimental results.

The classi�cation error on the projected data correlates well with the risk R�

and the projection leads to a signi�cant improvement in all cases, handwritten
character recognition being the most di¢ cult environment. In the case of face
recognition the data set used to train the projection is rather small and further
improvements are to be expected for larger, perhaps more di¢ cult data sets
than AT&T. In the cases, where the environment corresponds to a class of spe-
ci�c geometric invariances, the projection spectacularly reduces the classi�cation
error by orders of magnitude.

It seems promising to extend these experiments to the recognition of spa-
tially rotated objects. A very interesting possible line of possible experiments
involves unsupervised learning through the observation of a continuous process.
A pair consisting of the present observable vector and a recent memory would
be treated as a positive equivalence constraint, a pair of the current vector and a
distant memory a negative one. A correspondingly trained projection should map
temporal proximity to spatial proximity in its feature space. The observation of
continuously and quickly rotating objects which are occasionally being replaced
could then lead to a nearly rotation invariant preprocessor. Some experiments
pointing in a similar direction have been made by Bar-Hillel et al [3].
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