A tail-bound for sums of independent positive semidefinite random matrices

Andreas Maurer
am@andreas-maurer.eu

July 8, 2011

In this note I prove the following one-sided Berstein-type inequality for sums of independent positive semidefinite $N \times N$-matrices:

Theorem 1 Let X_{1}, \ldots, X_{n} be independent random $N \times N$-matrices with $X_{i} \succeq 0$ and $t>0$. Then

$$
\operatorname{Pr}\left\{\lambda_{\max }\left(\sum_{i}\left(E\left[X_{i}\right]-X_{i}\right)\right)>t\right\} \leq N \exp \left(\frac{-t^{2}}{2 \lambda_{\max }\left(\sum_{i} E\left[X_{i}^{2}\right]\right)}\right) .
$$

This is the noncommutative version of an inequality in [1], where it is argued that it improves over Bernstein's inequality for very heterogeneous summands. Given the machinery introduced in [2] the proof is surprisingly simple, easier than that of Bernstein's inequality. The method of Ahlswede and Winter might possibly also be used to arrive at the same result, but I have not checked the details.

Before giving the proof I state the necessary auxiliary results (which can all be found in [2]), a trivial corollary and a simple lemma of my own. The word "matrix" will always refer to a real $N \times N$ matrix.

Lemma 2 (Proposition 3.1 in [2], from Ahlswede and Winter, Oliveira). Let Y be random symmetric matrix and $t \in \mathbb{R}$. Then $\forall \beta>0$

$$
\operatorname{Pr}\left\{\lambda_{\max } Y \geq t\right\} \leq e^{-\beta t} E \operatorname{tr} e^{\beta Y}
$$

The following beautiful trick is derived in [2] from Lieb's work on convex trace functions.

Lemma 3 (Lemma 3.4 in [2]) : Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a vector of independent random symmetric matrices. Then

$$
E \operatorname{tr} \exp \left(\sum X_{i}\right) \leq \operatorname{tr} \exp \left(\sum \ln E e^{X_{i}}\right)
$$

With deterministic $X_{0}=A$ we immediately obtain

Corollary 4 Let A be a symmetric matrix and let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a vector of independent random symmetric matrices. Then

$$
E \operatorname{tr} \exp \left(A+\sum X_{i}\right) \leq \operatorname{tr} \exp \left(A+\sum \ln E e^{X_{i}}\right) .
$$

Lemma 5 For a matrix $X \succeq 0$

$$
\ln E e^{-X} \preceq-E[X]+\frac{1}{2} E\left[X^{2}\right]
$$

Proof. For $x \geq 0$ calculus shows that $e^{-x} \leq 1-x+x^{2} / 2$. Thus, by the transfer rule ((2.2) in [2]), $e^{-X} \preceq I-X+X^{2} / 2$ and

$$
E e^{-X} \preceq I-E[X]+\frac{1}{2} E\left[X^{2}\right]=I+T \preceq e^{T}=\exp \left(-E[X]+\frac{1}{2} E\left[X^{2}\right]\right),
$$

where we used $1+t \leq e^{t}$ and again the transfer rule with $T=-E[X]+$ $E\left[X^{2}\right] / 2$. Taking the logarithm completes the proof.

We also use the following monotonicity property of the trace exponential (also stated in [2]): For symmetric matrices A and B

$$
\begin{equation*}
A \preceq B \Longrightarrow \operatorname{tr} e^{A} \leq \operatorname{tr} e^{B} . \tag{1}
\end{equation*}
$$

Proof of Theorem 1. For $\beta>0$

$$
\begin{aligned}
& \operatorname{Pr}\left\{\lambda_{\max }\left(\sum_{i}\left(E\left[X_{i}\right]-X_{i}\right)\right)>t\right\} \\
\leq & e^{-\beta t} E \operatorname{tr} \exp \left(\left(\beta \sum E\left[X_{i}\right]\right)+\sum\left(-\beta X_{i}\right)\right) \text { by Lemma } 2 \\
\leq & e^{-\beta t} \operatorname{tr} \exp \left(\beta \sum E\left[X_{i}\right]+\sum \ln E e^{-\beta X_{i}}\right) \text { by Corollary } 4 \\
\leq & e^{-\beta t} \operatorname{tr} \exp \left(\beta \sum E\left[X_{i}\right]+\sum\left(-\beta E\left[X_{i}\right]+\frac{\beta^{2}}{2} E\left[X_{i}^{2}\right]\right)\right) \text { Lemma } 5 \text { and (1) } \\
= & e^{-\beta t} \operatorname{tr} \exp \left(\frac{\beta^{2}}{2} \sum E\left[X_{i}^{2}\right]\right) \\
\leq & N e^{-\beta t} \lambda_{\max }\left(\exp \left(\frac{\beta^{2}}{2} \sum E\left[X_{i}^{2}\right]\right)\right) \text { since } \operatorname{tr}(A) \leq N \lambda_{\max }(A) \text { for } A \succeq 0 \\
= & N \exp \left(\frac{\beta^{2}}{2} \lambda_{\max }\left(\sum E\left[X_{i}^{2}\right]\right)-\beta t\right) \text { by spectral mapping. }
\end{aligned}
$$

Using calculus to minimize in β gives the result.

References

[1] A. Maurer, A bound on the deviation probability for sums of nonnegative random variables, J. Inequal. Pure. Appl. Math., 4(1), Art.15, 2003
[2] Joel Tropp, user friendly tail bounds for sums of random matrices, arxive.

