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Abstract

We give a distribution-dependent concentration inequality for func-
tions of independent variables. The result extends Bernstein’s inequality
from sums to more general functions, whose variation in any argument
does not depend too much on the other arguments. Applications sharpen
existing bounds for U-statistics and the generalization error of regularized
least squares.

1 Introduction

If X1, ..., Xn are independent real random variables, with Xk−EXk ≤ 1 almost
surely, and f (X1, ..., Xn) =

∑
kXk, then Bernstein’s inequality [2] asserts that

for t > 0

Pr {f (X1, ..., Xn)− E [f (X1, ..., Xn)] > t} ≤ exp

(
−t2

2
∑
k σ

2
k + 2t/3

)
,

where σ2
k is the respective variance of Xk. In this work we extend Bernstein’s

inequality to more general functions f .
This extension requires two modifications. First the variance

∑
k σ

2
k is re-

placed by the Efron-Stein upper bound, or jackknife estimate, of the variance.
Secondly a correction term J (f) is added to the coeffi cient 2/3 of t in the
denominator of the exponent. This correction term, which we call the interac-
tion functional of f , vanishes for sums and represents the extent to which the
variation of f in any given argument depends on other arguments.
To proceed we introduce some notation and conventions. Let Ω =

∏n
k=1 Ωk

be some product of measurable spaces and let A (Ω) be the algebra of all
bounded, measurable real valued functions on Ω. For fixed k ∈ {1, ..., n} and
y, y′ ∈ Ωk define the substitution operator Sky and the difference operator D

k
y,y′

on A (Ω) by (
Skyf

)
(x1, ..., xn) = f (x1, ..., xk−1, y, xk+1, ..., xn)

and Dk
y,y′ = Sky − Sky′ . Both Skyf and Dk

y,y′f are independent of xk.
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Let a probability measure µk be given on each Ωk and let µ be the product
measure µ =

∏
µk on Ω. For f ∈ A (Ω) the expectation Ef and variance σ2 (f)

are defined as Ef =
∫

Ω
fdµ and σ2 (f) = E

[
(f − Ef)

2
]
. For k ∈ {1, ..., n}

the conditional expectation Ek and the conditional variance σ2
k are operators

on A (Ω), which act on a function f ∈ A (Ω) as

Ekf = Ey∼µk
[
Skyf

]
=

∫
Ωk

Skyf dµk (y) and

σ2
k (f) = Ek

[
(f − Ekf)

2
]

=
1

2
E(y,y′)∼µ2k

[(
Dk
y,y′f

)2]
,

where µ2
k is the product measure µk × µk on Ωk × Ωk. The sum of conditional

variances (SCV) operator Σ2 (f) : A (Ω)→ A (Ω) is defined as

Σ2 (f) =

n∑
k=1

σ2
k (f) .

This operator appears in the Efron-Stein inequality ([7],[15], see also Section
2.4) as

σ2 (f) ≤ E
[
Σ2 (f)

]
,

which becomes an equality if f is a sum of real valued functions Xk on Ωk.
It also appears in the following exponential tail bound (see McDiarmid [11],
Theorem 3.8, or [14], Theorem 11).

Theorem 1 Suppose that f ∈ A (Ω) satisfies f −Ekf ≤ b for all k ∈ {1, ..., n}.
Then

Pr {f − Ef > t} ≤ exp

(
−t2

2 supx∈Ω Σ2 (f) (x) + 2bt/3

)
.

This inequality reduces to Bernstein’s inequality if f is a sum, but it suffers
from the worst-case choice of the configuration x, for which Σ2 (f) (x) is eval-
uated. The supremum in x is a hindrance to estimation of the variance term,
and we would like to replace it by an expectation, just as in the Efron-Stein
inequality.
This replacement is trivially possible when f is a sum, because then Σ2 (f)

is constant. It turns out that it is also possible if Σ2 (f) has the right properties
of concentration about its mean - a surrogate of being constant, so to speak.
To insure this we control the interaction between the different arguments of f ,
in the sense that the variation in any argument must not depend too much on
the other arguments.

Definition 2 The interaction functional J : A (Ω)→ R+
0 is defined by

J (f) =

sup
x∈Ω

∑
k,l:k 6=l

sup
z,z′∈Ωl

sup
y,y′∈Ωk

(
Dl
z,z′D

k
y,y′f

)2
(x)

1/2

for f ∈ A (Ω) .

2



The distribution-dependent interaction functional Jµ is defined by

Jµ (f) = 2

sup
x∈Ω

∑
l

sup
z∈Ωl

∑
k:k 6=l

σ2
k

(
f − Slzf

)
(x)

1/2

.

These quantities are related and bounded using the inequalities

Jµ (f) ≤ J (f) (1)

≤ n sup
x∈Ω

max
k,l

sup
z,z′∈Ωl

sup
y,y′∈Ωk

(
Dl
z,z′D

k
y,y′f

)
(x)

(see the end of section 2.3). For our applications below the last, simplest and
crudest bound appears to be suffi cient. The above functionals and bounds vanish
for sums and are positive homogeneous of degree one. The following is our main
result.

Theorem 3 Suppose f ∈ A (Ω) satisfies f − Ekf ≤ b for all k. Then for all
t > 0

Pr {f − Ef > t} ≤ exp

(
−t2

2E [Σ2 (f)] + (2b/3 + Jµ (f)) t

)
.

Remarks:
1. If this is applied to sums of independent random variables (real valued

functions Xk defined on Ωk), we recover Bernstein’s inequality.
2. Consider the case that Ωk = Ω0, µk = µ0 and a sequence of functions

fn ∈ A (Ωn0 ), such that Jµ (fn) /
√
n → 0 (for example if Jµ (fn) is bounded)

and such that the limit σ2 = limn→∞E
[
Σ2 (fn)

]
/n exists. Applying Theorem

3 to the sequence fn/
√
n, and letting n → ∞, we obtain the tail of a normal

distribution with variance σ2. In some cases, like U-statistics, this is known to
be the correct limiting distribution (Hoeffding [8], Theorem 7.1).
3. Although the distribution dependent functional Jµ is potentially much

smaller than J , in the applications considered sofar it seems suffi cient to consider
J or the above bounds thereof.
4. Since E

[
Σ2 (f)

]
≤ supx Σ2 (f) (x) ≤ supx (1/4)

∑
k supy,y′

(
Dk
y,y′ (f)

)2
(x),

the variance term above can never be larger than the variance term in Theorem
1, which in turn can never be larger than what we get from the bounded differ-
ence inequality (McDiarmid [11], Theorem 3.7, or Boucheron et al [5], Theorem
6.5).
5. If also f−Ekf ≥ −b, then the result can be applied to −f so as to obtain

a two-sided inequality.

In Theorem 2.1 of [9] Christian Houdré bounds the bias in the Efron-Stein
inequality in terms of iterated jackknive estimates of variance, which correspond
to the expectations of higher order differences. The second of these iterates can
be bounded in terms of the interaction functional and allows us to put the
variance σ2 (f) back into the inequality of Theorem 3.
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Proposition 4

E
[
Σ2 (f)

]
≤ σ2 (f) +

1

4
J2 (f) .

See Section 2.4 for the proof. In combination with Theorem 3 we obtain the
following corollary.

Corollary 5 Suppose f ∈ A and f − Ekf ≤ b for all k. Then for all t > 0

Pr {f − Ef > t} ≤ exp

(
−t2

2σ2 (f) + J2 (f) /2 + (2b/3 + Jµ (f)) t

)
.

We apply Theorem 3 in two seemingly very different situations.
For U-statistics with bounded, symmetric kernels it is surprisingly easy to

bound the interaction functional, and an application of Theorem 3 leads to the
following concentration result.

Theorem 6 If µ0 is a probability measure on X and µ = µn0 on Xn, and g is
a measurable, symmetric (permutation invariant) kernel g : Xm → [−1, 1] with
1 < m < n, and u ∈ A (Xn) is defined by

u (x) =

(
n

m

)−1 ∑
1≤j1<...<jm≤n

g (xj1 , ..., xjm) ,

then for t > 0

Pr {|u− Eu| > t}

≤ 2 exp

 −nt2

2m2σ2
y∼µ0

(
Ex∼µm−10

[g (y,x)]
)

+ m2(m−1)2

n−m + 16m2t/3

 .

A similar bound given by Arcones ([1], Theorem 2) is

4 exp

 −nt2

2m2σ2
y∼µ0

(
Ex∼µm−10

[g (y,x)]
)

+
(

2m+2mm
√

(n− 1) /n+ 2/3m−1
)
t

 .

For large m, n or deviation t the bound in Theorem 6 is the smaller one of the
two. Already for order m = 2 it gives an improvement if (n−m) t ≥ 0.12. For
order m = 3 the crossover is already at (n−m) t ≈ 6 × 10−2, for order m = 4
at (n−m) t ≈ 10−2.

In a completely different context Theorem 3 can be applied to sharpen a
stability based generalization bound for regularized least squares (RLS).

4



Let B be the unit ball in a separable, real Hilbertspace, and let Z =
B× [−1, 1]. Fix λ ∈ (0, 1). For z = ((x1, y1) , ..., (xn, yn)) ∈ Zn regularized
least squares returns the vector

wz = arg min
w∈H

1

n

n∑
i=1

(〈w, xi〉 − yi)2
+ λ ‖w‖2 .

Let Z = (Z1, ..., Zn) be a vector of independent random variables with values in
Z, where Zi is identically distributed to Z = (X,Y ). We can apply Theorem
3, to obtain tailbounds for the random variable R (Z)− R̂ (Z), where the "true
error" R and the "empirical error" R̂ are defined on Zn by

R (z) = EZ (〈wz, X〉 − Y )
2 and R̂ (z) =

1

n

n∑
i=1

(〈wz, xi〉 − yi)2
.

We can prove the following result.

Theorem 7 There is an absolute constant c such that for every t > 0

Pr
{(
R− R̂

)
− E

(
R− R̂

)
> t
}
≤ exp

 −nt2

2nE
[
Σ2
(
R− R̂

)
(X)

]
+ cλ−3t

 .

Solving for t with a fixed bound δ on the probability we obtain that with
probability at least 1− δ in Z(

R− R̂
)

(Z) ≤ E
[(
R− R̂

)
(Z)
]

+

+

√
2E
[
Σ2
(
R− R̂

)
(Z)
]

ln (1/δ) +
cλ−3 ln (1/δ)

n
.

It can be shown ([6]) that the expectation E
[(
R− R̂

)
(Z)
]
is of order 1/n,

so for large sample sizes the generalization error
(
R− R̂

)
(Z) is dominated by

the variance term, which may be considerably smaller than the distribution-
independent bound obtained from the bounded difference inequality as in [6] (it
can never be larger because of Remark 4 above). Using techniques as in [13] this
term can in principle be estimated from a sample and the estimate combined
with the above to a purely data-dependent bound.
A major drawback here is the dependence on λ−3 in the last term, because in

practical applications the regularization parameter λ typically decreases with n.
The λ−3 is likely due to a very crude method of bounding J (f) by differentiation.
A more intelligent method might give λ−2n−1.
It seems plausible that similar bounds exist for Tychonov regularization with

other more general loss functions having appropriate properties.

The idea of using second differences (as in the definition of J) has been put
to work by Houdré [9] to estimate the bias in the Efron-Stein inequality. The
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entropy method, which underlies our proof of Theorem 3, has been developed by
a number of authors, notably Ledoux [10] and Boucheron, Lugosi and Massart
[3]. The latter work also introduces the key-idea of combining it with the de-
coupling method used below. Our proof follows a thermodynamic formulation
of the entropy method as laid out in [14].
The next section gives a proof of Theorem 3. Then follow the applications

to U-statistics and ridge regression.

2 Proof of Theorem 3

The proof of our main result, Theorem 3, uses the entropy method ([10], [3],[5]),
from which the next section collects a set of tools. These results are taken from
[14], which gives more detailed proofs and additional motivation. For the benefit
of the reader, and to make the paper more self-contained, corresponding proofs
are also given in a technical appendix.

2.1 Definitions and tools

Ω and A (Ω) are as in the introduction, Ak (Ω) is the subalgebra of A (Ω) of
those bounded, measurable functions on Ω which are independent of the k-th
coordinate. For f ∈ A (Ω) and β ∈ R define the expectation functional Eβf on
A (Ω) by

Eβf [g] = Z−1
βf E

[
geβf

]
, g ∈ A (Ω) ,

where Zβf = E
[
eβf
]
. The entropy Sf (β) of f at β is given by

Sf (β) = KL
(
Z−1
βf e

βfdµ, dµ
)

= βEβf [f ]− lnZβf ,

where KL (ν, µ) is the Kullback-Leibler divergence.

Lemma 8 (Theorem 1 in [14]) For any f ∈ A (Ω) and β > 0 we have

lnE
[
eβ(f−Ef)

]
= β

∫ β

0

Sf (γ)

γ2
dγ

and, for t ≥ 0,

Pr {f − Ef > t} ≤ exp

(
β

∫ β

0

Sf (γ)

γ2
dγ − βt

)
.

Define the real function ψ by ψ (t) := tet − et + 1.

Lemma 9 (Lemma 10 in [14]) Let f ∈ A (Ω) satisfy f − Ekf ≤ 1 for all
k ∈ {1, ..., n}. Then for β > 0

Sf (β) ≤ ψ (β) Eβf
[
Σ2 (f)

]
.
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Bounding Eβf
[
Σ2 (f)

]
≤ supx Σ2 (f) (x) and using Lemma 8 quickly leads

to a proof of Theorem 1. For Theorem 3 we need more tools.

Definition 10 The operator D : A (Ω)→ A (Ω) is defined by

Dg =
∑
k

(
g − inf

y∈Ωk

Sky g

)2

, for g ∈ A (Ω) .

To clarify: infy∈Ωk
Sky g is the member ofA (Ω) defined by

(
infy∈Ωk

Sky g
)

(x) =

infy∈Ωk

(
Sky (g (x))

)
. It does not depend on xk, so infy∈Ωk

Sky g ∈ Ak (Ω).

Lemma 11 (Lemma 15 in [14], also Proposition 5 in [12]) We have, for β > 0,
that

Sf (β) ≤ β2

2
Eβf [Df ] .

We use this to derive the following property of weakly self-bounded functions,
which, together with Proposition 17 below, gives the concentration property of
Σ2 (f) alluded to in the introduction.

Lemma 12 Suppose that
Df ≤ a2 f. (2)

Then for β ∈
(
0, 2/a2

)
lnE

[
eβf
]
≤ βEf

1− a2β/2
, (3)

Proof. Using Lemma 8 and Lemma 11 and the weak self-boundedness assump-
tion (2) we have for β > 0 that

lnE
[
eβ(f−E[f ])

]
= β

∫ β

0

Sf (γ)

γ2
dγ ≤ β

2

∫ β

0

Eγf [Df ] dγ ≤ a2β

2

∫ β

0

Eγf [f ] dγ

=
a2β

2
lnEeβf ,

where the last identity follows from the fact that Eγf [f ] = (d/dγ) lnEeγf . Thus

lnE
[
eβf
]
≤ a2β

2
lnEeβf + βEf,

and rearranging this inequality for β ∈
(
0, 2/a2

)
establishes the claim.

We also use the following decoupling technique: If µ and ν are two proba-
bility measures and ν is absolutely continuous w.r.t. µ then it is easy to show
that

Eνg ≤ KL (dν, dµ) + lnEµe
g.

Applying this inequality when ν is the measure Z−1
βf e

βfdµ we obtain the follow-
ing
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Lemma 13 We have for any g ∈ A (Ω) that

Eβf [g] ≤ Sf (β) + lnE [eg] . (4)

2.2 A concentration inequality

We now use the tools of the previous section to prove an intermediate concentra-
tion inequality (Proposition 16) in the case that Σ2 (f) satisfies the self-bounding
hypothesis of Lemma 12. In the next section we show that this condition is sat-
isfied if a is taken equal to the interaction functional Jµ (f), and together the
two results then give Theorem 3.
We need two more auxiliary results. Recall the definition of the function

ψ (t) := tet − et + 1.

Lemma 14 For any a ≥ 0 and 0 ≤ γ < 1/ (1/3 + a/2) we have
(i) a

√
ψ (γ) /2 < 1and

(ii)
ψ (γ)

γ2
(

1− a
√
ψ (γ) /2

)2 ≤
1

2 (1− (1/3 + a/2) γ)
2 .

Proof. If 0 ≤ γ < 1/ (1/3 + a/2) and a ≥ 0 then γ < 3. In this case we have
the two convergent power series representations

1

2 (1− γ/3)
2 =

∞∑
n=0

n+ 1

2
3−nγn =:

∞∑
n=0

bnγ
n

γeγ − eγ + 1

γ2
=

∞∑
n=0

1

(n+ 2)n!
γn =:

∞∑
n=0

cnγ
n.

Now b0 = c0 = 1/2 by inspection and for n ≥ 1

bn
cn

=
(n+ 2)!

2× 3n
=

1× 2

2
×

n∏
k=1

(
k + 2

3

)
≥ 1,

so that bn ≥ cn for all non-negative n. Term by term comparison of the two
power series gives

ψ (γ)

γ2
=
γeγ − eγ + 1

γ2
≤ 1

2 (1− γ/3)
2 , (5)

which is (ii) in the case that a = 0.
It also gives us for general a > 0 that√

ψ (γ) /2 ≤ γ

2 (1− γ/3)
< a−1, (6)
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since γ < 1/ (1/3 + a/2) =⇒ γ/ (2 (1− γ/3)) < a−1. This proves (i).
(ii) is equivalent to

ψ (γ)

γ2
≤

(
1− a

√
ψ (γ) /2

)2

2 ((1− γ/3)− aγ/2)
2 .

To complete the proof it suffi ces by (5) to show that the right hand side above
is, for fixed γ, a non-decreasing function of a ∈ [0, 2 (1− γ/3) /γ). Let b :=√
ψ (γ) /2, c := (1− γ/3) and d := γ/2, so the expression in question becomes

(1− ab)2
/
(

2 (c− ad)
2
)
. Calculus gives

d

da

(1− ab)2

2 (c− ad)
2 =

(1− ab) (d− bc)
(c− ad)

3 .

But c− ad = 1− (1/3 + a/2) γ > 0 by assumption. Also 1− ab > 0 by (i) and,
using (6),

d− bc =
γ

2
−
√
ψ (γ) /2 (1− γ/3)

≥ γ

2
− γ (1− γ/3)

2 (1− γ/3)
= 0.

The expression (1− ab)2
/
(

2 (c− ad)
2
)
is therefore non-decreasing in a.

We finally need an optimization lemma

Lemma 15 Let C and b denote two positive real numbers, t > 0. Then

inf
β∈[0,1/b)

(
−βt+

Cβ2

1− bβ

)
≤ −t2

2 (2C + bt)
. (7)

The proof of this lemma can be found in [12] (Lemma 12).

Proposition 16 Suppose that f ∈ A (Ω) is such that ∀k, f − Ek (f) ≤ 1, and
that

D
(
Σ2 (f)

)
≤ a2 Σ2 (f) ,

with a ≥ 0. Then for all t > 0

Pr {f − Ef > t} ≤ exp

(
−t2

2E [Σ2 (f)] + (2/3 + a) t

)
.

Proof. By a simple limiting argument we may assume that a > 0. Now let
0 < γ ≤ β < 1/ (1/3 + a/2). By Lemma 14 (i) θ := (1/a)

√
2ψ (γ) < 2/a2 and

also θ >
√
ψ (γ) /2

√
2ψ (γ) = ψ (γ). By Lemma 9

Sf (γ) ≤ ψ (γ)Eγf
[
Σ2 (f)

]
= θ−1ψ (γ)Eγf

[
θΣ2 (f)

]
≤ θ−1ψ (γ)

(
Sf (γ) + lnE

[
eθΣ

2(f)
])
,
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where the second inequality follows from Lemma 13. Subtracting θ−1ψ (γ)Sf (γ),
multiplying by θ and using Lemma 12 together with the assumed self-boundedness
of Σ2 (f) gives us

Sf (γ) (θ − ψ (γ)) ≤ ψ (γ) lnE
[
eθΣ

2(f)
]
≤ θψ (γ)

1− a2θ/2
E
[
Σ2 (f)

]
,

which holds, since θ < 2/a2. Since θ > ψ (γ) we can divide by θ − ψ (γ) to
rearrange and then use the definition of θ to obtain

Sf (γ) ≤ ψ (γ)(
1− a

√
ψ (γ) /2

)2E
[
Σ2 (f)

]
.

By Lemma 14 (ii) for β < 1/ (1/3 + a/2)∫ β

0

Sf (γ) dγ

γ2
≤ E

[
Σ2 (f)

] ∫ β

0

ψ (γ)

γ2
(

1− a
√
ψ (γ) /2

)2 dγ

≤ E
[
Σ2 (f)

] ∫ β

0

dγ

2 (1− (1/3 + a/2) γ)
2

=
E
[
Σ2 (f)

]
2

β

1− (1/3 + a/2)β

and from Lemma 8

Pr {f − Ef > t} ≤ inf
β>0

exp

(
β

∫ β

0

Sf (γ)

γ2
dγ − βt

)

≤ inf
β∈(0,1/(1/3+a/2))

exp

(
E
[
Σ2 (f)

]
2

β2

1− (1/3 + a/2)β
− βt

)

≤ exp

(
−t2

2 (E [Σ2 (f)] + (1/3 + a/2) t)

)
,

where we used Lemma 15 in the last step.

2.3 Self-boundedness of the sum of conditional variances

We record some obvious, but potentially confusing properties of the substitution
operator. For k ∈ {1, ..., n} and y ∈ Ωk the operator Sky is a homomorphism of
A (Ω) and the identity on Ak (Ω). If l 6= k it commutes with Slz and with El.
Most importantly

Skyσ
2
l (f) =

1

2
SkyE(z,z′)∼µ2l

[(
Dl
z,z′f

)2]
=

1

2
E(z,z′)∼µ2l

[(
Dl
z,z′S

k
yf
)2]

= σ2
l

(
Skyf

)
.

Note however that for l = k we get SkyS
k
z = Skz and S

k
yEk = Ek and Skyσ

2
k = σ2

k,
because Skz , Ek and σ

2
k map to Ak (Ω).
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Proposition 17 We have D
(
Σ2 (f)

)
≤ Jµ (f)

2
Σ2 (f) for any f ∈ A (Ω).

Proof. Fix x ∈ Ω. Below all members of A (Ω) are understood as evaluated
on x. For l ∈ {1, ..., n} let zl ∈ Ωl be a minimizer in z of SlzΣ

2 (f) (existence is
assumed for simplicity, an approximate minimizer would also work), so that

inf
z∈Ωl

SlzΣ
2 (f) = SlzlΣ

2 (f) =
∑
k

Slzlσ
2
k (f) = σ2

l (f) +
∑
k:k 6=l

Slzlσ
2
k (f) ,

where we used the fact that Slzlσ
2
l (f) = σ2

l (f), because σ2
l (f) ∈ Al (Ω). Then

D
(
Σ2 (f)

)
=

∑
l

(
Σ2 (f)− inf

zl∈Ωl

SlzΣ
2 (f)

)2

=
∑
l

∑
k

σ2
k (f)− σ2

l (f)−
∑
k:k 6=l

Slzlσ
2
k (f)

2

=
∑
l

∑
k:k 6=l

(
σ2
k (f)− Slzlσ

2
k (f)

)2

.

This step gave us a sum over k 6= l, which is important, because it allows us
to use the commutativity properties mentioned above. Then, using 2σ2

k (f) =

E(y,y′)∼µ2k

(
Dk
y,y′f

)2
, we get

4D
(
Σ2 (f)

)
=

∑
l

∑
k:k 6=l

E(y,y′)∼µ2k

(
Dk
y,y′f

)2 − SlzlE(y,y′)∼µ2k

(
Dk
y,y′f

)22

=
∑
l

∑
k 6=l

E(y,y′)∼µ2k

[(
Dk
y,y′f

)2 − (Dk
y,y′S

l
zl
f
)2]2

=
∑
l

∑
k 6=l

E(y,y′)∼µ2k

[(
Dk
y,y′f −Dk

y,y′S
l
zl
f
) (
Dk
y,y′f +Dk

y,y′S
l
zl
f
)]2

≤
∑
l

∑
k:k 6=l

E(y,y′)∼µ2k

[
Dk
y,y′

(
f − Slzlf

)]2 ∑
k:k 6=l

E(y,y′)∼µ2k

[
Dk
y,y′f +Dk

y,y′S
l
zl
f
]2

11



by an application of Cauchy-Schwarz. Now, using (a+ b)
2 ≤ 2a2 + 2b2, we can

bound the last sum independent of l by∑
k:k 6=l

E(y,y′)∼µ2k

[
Dk
y,y′f +Dk

y,y′S
l
zl
f
]2

≤
∑
k:k 6=l

E(y,y′)∼µ2k

[
2
(
Dk
y,y′f

)2
+ 2

(
Dk
y,y′S

l
zl
f
)2]

= 4
∑
k:k 6=l

σ2
k (f) + 4Slzl

∑
k:k 6=l

σ2
k (f)

≤ 4
(
Σ2 (f) + SlzlΣ

2 (f)
)

= 4

(
Σ2 (f) + inf

z∈Ωl

SlzΣ
2 (f)

)
≤ 8Σ2 (f) ,

so that

D
(
Σ2 (f)

)
≤ 2

∑
l

∑
k:k 6=l

E(y,y′)∼µ2k

[
Dk
y,y′

(
f − Slzlf

)]2
Σ2 (f)

= 4
∑
l

∑
k:k 6=l

σ2
k

(
f − Slzlf

)
Σ2 (f)

≤ 4 sup
x∈Ω

∑
l

sup
z∈Ωl

∑
k:k 6=l

σ2
k

(
f − Slzf

)
(x) Σ2 (f) = J2

µ (f) Σ2 (f) .

Theorem 3 for the case b = 1 is obtained by substituting Jµ (f) for a in
Proposition 16. The general case follows from rescaling and the homogeneity
properties of Σ2 and Jµ.

Of the inequalities in (1) only the first one is not completely obvious:

J2
µ (f) = 4 sup

x∈Ω

∑
l

sup
z∈Ωl

∑
k:k 6=l

σ2
k

(
f − Slzf

)
(x)

≤ 4 sup
x∈Ω

∑
l

sup
z,z′∈Ωl

∑
k:k 6=l

σ2
k

(
Dl
z,z′f

)
(x)

≤ sup
x∈Ω

∑
l

sup
z,z′∈Ωl

∑
k:k 6=l

sup
y,y′

(
Dk
y,y′D

l
z,z′f

)2
(x) ≤ J2 (f) .

In the last inequality we used the fact that the variance of a random vari-
able is bounded by a quarter of the square of its range, so that σ2

k (f) ≤
(1/4) supy,y′

(
Dk
y,y′f

)2
for all f ∈ A (Ω).

2.4 The Bias in the Efron-Stein inequality

Since the published work of Houdré [9] assumes symmetric functions and iid
data, we give an independent derivation.
Let X1, ..., Xn be independent variables with Xi distributed as µi in ⊗i,

and let X ′1, ..., X
′
n be independent copies thereof. Denote X = (X1, ..., Xn) and

12



X ′ = (X ′1, ..., X
′
n) and

X(i) = (X1, ..., Xi−1, X
′
i, Xi+1, ..., Xn) and X [i] = (X ′1, ..., X

′
i, Xi+1, ..., Xn) .

We also write X\i for X, but with the variable Xi removed.
Let f :

∏
⊗i → R satisfy E [f ] = 0. Then, writing f (X) − f (X ′) as a

telescopic series, we get

σ2 (f) = E [f (X) (f (X)− f (X ′))]

=

n∑
k=1

E
[
f (X)

(
f
(
X [k−1]

)
− f

(
X [k]

))]
= −

n∑
k=1

E
[
f
(
X(k)

)(
f
(
X [k−1]

)
− f

(
X [k]

))]
,

where the last identity is obtained by exchanging Xk and X ′k. This gives the
nice variance formula

σ2 (f) =
1

2

n∑
k=1

E
[(
f (X)− f

(
X(k)

))(
f
(
X [k−1]

)
− f

(
X [k]

))]
, (8)

appearantly due to Chatterjee. The Cauchy-Schwarz inequality then gives the
Efron-Stein inequality

σ2 (f) ≤ E
[
Σ2 (f)

]
=

1

2

n∑
k=1

E

[(
f (X)− f

(
X(k)

))2
]
. (9)

Now we look at the bias in this inequality.

Theorem 18 With above conventions we have

E
[
Σ2 (f)

]
−σ2 (f) ≤ 1

4

∑
k,i:i 6=k

E

[(
f (X)− f

(
X(i)

)
− f

(
X(k)

)
+ f

(
X(k)(i)

))2
]
.

The proof uses Chatterjee’s formula (8) twice. First we establish a lemma,
which itself already uses the Efron Stein inequality.

Lemma 19
n∑
k=1

σ2 (E [f (X) |Xk]) ≤ σ2 (f) .

Together with the Efron Stein inequality (9) this gives the attractive chain
of inequalities

n∑
k=1

σ2 (E [f (X) |Xk]) ≤ σ2 (f) ≤
n∑
k=1

E
[
σ2
k (f)

]
.

13



Proof of Lemma 19. By induction on n. Recall the total variance formula

σ2 (Z) = σ2 [E [Z|X]] + E
[
σ2 [Z|X]

]
.

With f (X) = Z this gives the case n = 1. For n = 2 we get

2σ2 [f (X)] = σ2 [E [f (X) |X1]] + σ2 [E [f (X) |X2]] +

+E
[
σ2 [f (X) |X1]

]
+ E

[
σ2 [f (X) |X2]

]
≥ σ2 [E [f (X) |X1]] + σ2 [E [f (X) |X2]] + σ2 [f (X)] ,

where we used the Efron-Stein inequality (9). This is where independence comes
in and gives us the case n = 2. Suppose now that the lemma holds for n − 1.
Then

n∑
k=1

σ2 [E [f (X) |Xk]] =

n−1∑
k=1

σ2 [E [f (X) |Xk]] + σ2 [E [f (X) |Xn]]

≤ σ2 [E [f (X) |X1, ..., Xn−1]] + σ2 [E [f (X) |Xn]]

≤ σ2 [E [f (X)]] ,

where the first inequality follows from the induction hypothesis, and the second
inequality follows from applying the case n = 2 to the two random variables
(X1, ..., Xn−1) and Xn.

Now we tackle the bias in the Efron Stein inequality. The strategy is to first
use Chatterjee’s variance formula on each individual term on the right hand side
of (9) and then sum the results.
The only diffi culty here is notational because we now need more shadow

variables. We deal with this problem by augmenting the vectors X and X ′ to
become n+ 1 dimensional.

Proof of Theorem 18. First fix an index k and observe that f (X)−f
(
X(k)

)
depends on n+ 1 independent variables. We introduce variables Xn+1 which is
iid to Xk, and an independent copy X ′n+1 thereof, and consider correspondingly
augmented vectors X and X ′ with n + 1 independent components. We also
introduce functions gk, ψ, φ : (

∏n
i=1 Xi)×Xk → R defined by

ψ (x1, ..., xn+1) = f (x1, ..., xn) ,

φ (x1, ..., xn+1) = f (x1, ..., xk−1, xn+1, xk+1, ..., xn) ,

and gk = ψ − φ. Then E
[(
f (X)− f

(
X(k)

))2]
= E

[
gk (X)

2
]
. Now we use

Chatterjee’s formula (8) with n replaced by n + 1 and f replaced by gk. We

14



obtain

2E
[
gk (X)

2
]

=

=

n+1∑
i=1

E
[(
gk (X)− gk

(
X(i)

))(
gk

(
X [i−1]

)
− gk

(
X [i]

))]
=

∑
i∈{1,...,n}\k

E
[(
gk (X)− gk

(
X(i)

))(
gk

(
X [i−1]

)
− gk

(
X [i]

))]
+ E

[(
gk (X)− gk

(
X(k)

))(
gk

(
X [k−1]

)
− gk

(
X [k]

))]
+ E

[(
gk (X)− gk

(
X(n+1)

))(
gk

(
X [n]

)
− gk

(
X [n+1]

))]
=: Ak +Bk + Ck. (10)

Since ψ does not depend on xn+1 we have

Ck =

= E
[(
ψ (X)− φ (X)− ψ

(
X(n+1)

)
+ φ

(
X(n+1)

))
×

×
(
ψ
(
X [n]

)
− φ

(
X [n]

)
− ψ

(
X [n+1]

)
+ φ

(
X [n+1]

))]
= E

[(
φ
(
X(n+1)

)
− φ (X)

)(
φ
(
X [n+1]

)
− φ

(
X [n]

))]
= E

[(
E
[
φ
(
X(n+1)

)
|X ′n+1

]
− E [φ (X) |Xn+1]

)2
]

= 2σ2 [E [f (X) |Xk]] .

The last identity follows from the definition of the function φ. Since φ does not
depend on xk we have

Bk =

= E
[(
ψ (X)− φ (X)− ψ

(
X(k)

)
+ φ

(
X(k)

))
×

×
(
ψ
(
X [k−1]

)
− φ

(
X [k−1]

)
− ψ

(
X [k]

)
+ φ

(
X [k]

))]
= E

[(
ψ (X)− ψ

(
X(k)

))(
ψ
(
X [k−1]

)
− ψ

(
X [k]

))]
= E

[(
f (X)− f

(
X(k)

))(
f
(
X [k−1]

)
− f

(
X [k]

))]
.
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Substituting these identities in (10), dividing by 4 and summing over k gives

E
[
Σ2 (f)

]
=

=
1

2

n∑
k=1

E
[
gk (X)

2
]

=
1

4

∑
k,i∈{1,...,n},k 6=i

E
[(
gk (X)− gk

(
X(i)

))(
gk

(
X [i−1]

)
− gk

(
X [i]

))]

+
1

4

n∑
k=1

E
[(
f (X)− f

(
X(k)

))(
f
(
X [k−1]

)
− f

(
X [k]

))]
+

1

2

n∑
k=1

σ2 [E [f (X) |Xk]]

≤ 1

4

∑
k,i:i 6=k

E

[(
f (X)− f

(
X(i)

)
− f

(
X(k)

)
+ f

(
X(k)(i)

))2
]

+ σ2 (f) .

In the inequality we bounded the first term with Cauchy-Schwarz. The second
term is equal to σ2 (f) /2 by Chatterjee’s formula (8), and the last term is
bounded by σ2 (f) /2 using Lemma 19.
Proposition 4 is an immediate consequence of Theorem 18.

3 Application to U-statistics

In this section we prove Theorem 6, which simplifies with some notation. If B
is a set and m ∈ N, then SmB denotes the set of all those subsets of B which
have cardinality m. Also, if S ⊆ {1, ..., n} and x ∈ Xn, we use xS to denote the
vector

(
xj1 , ..., xj|S|

)
∈ X |S|, where

{
j1, ..., j|S|

}
= S and the jk are increasingly

ordered. For y, z ∈ X we use (y, xS) and (y, z, xS) to denote respectively the
vectors

(
y, xj1 , ..., xj|S|

)
∈ X |S|+1 and

(
y, z, xj1 , ..., xj|S|

)
∈ X |S|+2. With this

notation

u (x) =

(
n

m

)−1 ∑
S∈Sm{1,...,n}

g (xS) .

We also need a combinatorial lemma.

Lemma 20 For n > m∣∣∣∣{(S, S′) ∈
(
Sm{1,...,n}

)2

: S ∩ S′ 6= ∅
}∣∣∣∣ ≤ (nm

)
m2

n−m.

Proof. Clearly∣∣∣∣{(S, S′) ∈
(
Sm{1,...,n}

)2

: S ∩ S′ 6= ∅
}∣∣∣∣

=

(
n

m

)2

−
∣∣∣∣{(S, S′) ∈

(
Sm{1,...,n}

)2

: S ∩ S′ = ∅
}∣∣∣∣ =

(
n

m

)((
n

m

)
−
(
n−m
m

))
.
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Now (
n
m

)
−
(
n−m
m

)(
n
m

) =

∏m
k=1 (n−m+ k)−

∏m
k=1 (n− 2m+ k)∏m

k=1 (n−m+ k)
.

Then we rewrite the enumerator using

m∏
k=1

ak −
m∏
k=1

bk =

m∑
l=1

(
m∏

k=l+1

ak

l−1∏
k=1

bk

)
(al − bl)

to get (
n
m

)
−
(
n−m
m

)(
n
m

) = m

m∑
l=1

∏m
k=l+1 (n−m+ k)

∏l−1
k=1 (n− 2m+ k)∏m

k=1 (n−m+ k)

= m

m∑
l=1

1

n−m+ l

l−1∏
k=1

(n− 2m+ k)

n−m+ k
≤ m2

n−m.

Proof of Theorem 6. With reference to any given k ∈ {1, ..., n}, and using
the symmetry of g,

u (x) =

(
n

m

)−1 ∑
S∈Sm{1,...,n}

g (xS)

=

(
n

m

)−1 ∑
S∈Sm{1,...,n}:k∈S

g (xS) +

(
n

m

)−1 ∑
S∈Sm{1,...,n}:k/∈S

g (xS)

=

(
n

m

)−1 ∑
S∈Sm−1{1,...,n}\k

g (xk, xS) +

(
n

m

)−1 ∑
S∈Sm{1,...,n}:k/∈S

g (xS) .

This gives

u (x)− Eku (x) =

(
n

m

)−1 ∑
S∈Sm−1{1,...,n}\k

(
g (xk, xS)− Ey∼µk [g (y, xS)]

)
≤ 2m/n,

because g takes values in an interval of diameter 2. This allows to apply Theorem
3 with b = 2m/n.
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Next we bound the interaction functional J (u). For k 6= l, and y, y′ ∈ Ωk
and z, z′ ∈ Ωl we get

Dk
y,y′u (x) =

(
n

m

)−1 ∑
S∈Sm−1{1,...,n}\k

(g (y, xS)− g (y′, xS))

and
∣∣Dl

z,z′D
k
y,y′u (x)

∣∣ ≤ (
n

m

)−1 ∑
S∈Sm−2{1,...,n}\{k,l}

|(g (y, z, xS)− g (y′, z, xS))−

− (g (y, z′, xS)− g (y′, z′, xS))|

≤ 4

(
n−2
m−2

)(
n
m

) = 4
m (m− 1)

n (n− 1)
,

so that

J (u) ≤

sup
x∈Ω

∑
k,l:k 6=l

sup
y,y′,z,z′

(
Dl
z,z′D

k
y,y′u (x)

)21/2

≤ 4m (m− 1)√
n (n− 1)

≤ 4m2

n
.

Theorem 3 then gives us

Pr {u− Eu > t} ≤ exp

(
−t2

2E [Σ2 (u)] + 16m2t/ (3n)

)
.. (11)

To bound E
[
Σ2 (u)

]
we will write σ2

k (u) as a sum of two sums, where the

first sum is over disjoint pairs (S, S′) ∈
(
Sm−1
{1,...,n}\k

)2

, and the second sum is

over intersecting pairs. If S and S′ ∈ Sm−1
{1,...,n}\k are disjoint, then, since all the

µk are equal to µ0,

Ex∼µE(y,y′)∼µ2k (g (y, xS)− g (y′, xS)) (g (y, xS′)− g (y′, xS′))

= E(y,y′)∼µ20

(
Ex∼µm−10

g (y, xS)− Ex∼µm−10
g (y′, xS)

)2

= 2σ2
y∼µ0

(
Ex∼µm−10

g (y, xS)
)
. (12)
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On the other hand we can use Lemma 20 to bound the number of intersecting
pairs and obtain

2Ex∼µσ
2
k (u) (x)

= Ex∼µE(y,y′)∼µ2k

(
Dk
y,y′u (x)

)2
=

(
n

m

)−2

Ex∼µE(y,y′)∼µ2k

 ∑
S∈Sm−1{1,...,n}\k

(g (y, xS)− g (y′, xS))


2

=

(
n

m

)−2 ∑
S,S′∈Sm−1{1,...,n}\k

Ex∼µE(y,y′)∼µ2k (g (y, xS)− g (y′, xS)) (g (y, xS′)− g (y′, xS′))

=

(
n

m

)−2 ∑
S,S′∈Sm−1{1,...,n}\k : S∩S′=∅

(· · · ) +

(
n

m

)−2 ∑
S,S′∈Sm−1{1,...,n}\k : S∩S′ 6=∅

(· · · )

≤ 2
m2

n2
σ2
y∼µ0

(
Ex∼µm−10

[g (y,x)]
)

+

(
n

m

)−2 ∣∣∣∣{(S, S′) ∈
(
Sm−1
{1,...,n}\k

)2

: S ∩ S′ 6= ∅
}∣∣∣∣

≤ 2
m2

n2
σ2
y∼µ0

(
Ex∼µm−10

[g (y,x)]
)

+
m2

n2

(m− 1)
2

n−m .

Summing over k, dividing by 2 and inserting in (11) gives us

Pr {u− Eu > t} ≤ exp

 −nt2

2m2σ2
y∼µ0

(
Ex∼µm−10

[g (y,x)]
)

+ m2(m−1)2

n−m + 16m2t/3

 .

Converting to a two sided bound gives the result.
Instead of Theorem 3 to obtain (11) we could have used Corollary 5 and

appealed to known results about σ2 (u) (as in [8]).

4 Application to ridge regression

In this section we prove Theorem 7. The key to the application of Theorem
3 is the following Lemma (L+ (H) denoting the cone of nonnegative definite
operators in H).

Lemma 21 Let G : (0, 1)
2 → L+ (H) and g : (0, 1)

2 → H be both twice
continuously differentiable, satisfying the conditions ∂2

∂s∂tG = 0, ∂2

∂s∂tg = 0,∥∥ ∂
∂tG

∥∥ ≤ B1,
∥∥ ∂
∂sG

∥∥ ≤ B1,
∥∥ ∂
∂tg
∥∥ ≤ B2 and

∥∥ ∂
∂sg
∥∥ ≤ B2 for real numbers B1

and B2. For λ > 0 define a function w : (0, 1)
2 → H by

w = (G+ λ)
−1
g.
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Then w is twice differentiable and∥∥∥∥ ∂∂tw
∥∥∥∥ ≤ λ−1 (B1 ‖w‖+B2) (13)∥∥∥∥ ∂2

∂s∂t
w

∥∥∥∥ ≤ 2λ−2
(
B2

1 ‖w‖+B1B2

)
(14)

Proof. A standard argument shows that
∥∥∥(G+ λ)

−1
∥∥∥ ≤ λ−1 (we use ‖.‖ for

the operator norm and for vectors in H, depending on context) and that

∂

∂t
(G+ λ)

−1
= − (G+ λ)

−1

(
∂

∂t
G

)
(G+ λ)

−1
,

so ∥∥∥∥ ∂∂t (G+ λ)
−1

∥∥∥∥ ≤ λ−2B1.

Then

∂

∂t
w =

(
∂

∂t
(G+ λ)

−1

)
g + (G+ λ)

−1 ∂

∂t
g

= − (G+ λ)
−1

(
∂

∂t
G

)
(G+ λ)

−1
g + (G+ λ)

−1 ∂

∂t
g

= − (G+ λ)
−1

(
∂

∂t
G

)
w + (G+ λ)

−1 ∂

∂t
g.

This gives (13). Also, using the fact that the mixed partials vanish by assump-
tion,

∂2

∂s∂t
w =

∂

∂s

[
− (G+ λ)

−1

(
∂

∂t
G

)
(G+ λ)

−1
g + (G+ λ)

−1 ∂

∂t
g

]
= (G+ λ)

−1

(
∂

∂s
G

)
(G+ λ)

−1

((
∂

∂t
G

)
w − ∂

∂t
g

)
+

+ (G+ λ)
−1

(
∂

∂t
G

)
(G+ λ)

−1

((
∂

∂s
G

)
w − ∂

∂s
g

)
,

which gives (14).

Proof of Theorem 7. It is well known and easily verified that wz is well
defined and explicitly given by the formula

wz = (Gz + λ)
−1
gz,

where the positive semidefinite operator Gz and the vector gz = g are given by

Gzv =
1

n

n∑
i=1

〈v, xi〉xi and gz =
1

n

n∑
i=1

yixi.
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Also we have

1

n

n∑
i=1

(〈wz, xi〉 − yi)2
+ λ ‖wz‖2 ≤

1

n

n∑
i=1

(〈0, xi〉 − yi)2
+ λ ‖0‖2 ≤ 1,

from which we retain that
∑

(〈wz, xi〉 − yi)2 ≤ n and ‖wz‖ ≤ λ−1/2.
Now consider any sample z ∈ Zn and fix two indices 1 ≤ k, l ≤ n with

k 6= l, and z′l = (x′l, y
′
l) , z

′
k = (x′k, y

′
k) , z′′l = (x′′l , y

′′
l ) ∈ Z and z′′k = (x′′k , y

′′
k ) ∈

Z. For (s, t) ∈ (0, 1)
2 we consider the behavior of ridge regression on the doubly

modified sample z (s, t) := Sl
z′l+s(z′′l −z′l)

Sk
z′k+t(z′′k−z′k)

z (Z is a convex subset of
H × R). We write

G (s, t) := Gz(s,t) and g (s, t) := gz(s,t) and w (s, t) := wz(s,t) = (G (s, t) + λ)
−1
g (s, t) .

Then∥∥∥∥( ∂

∂t
G

)
v

∥∥∥∥ =
1

n

∥∥∥∥ ∂∂t 〈v, x′k + t (x′′k − x′k)〉 (x′k + t (x′′k − x′k))

∥∥∥∥
=

1

n
‖〈v, x′′k − x′k〉 (x′l + t (x′′k − x′k)) + 〈v, x′k + t (x′′k − x′k)〉 (x′′k − x′k)‖

≤ 2

n
‖v‖ ‖x′′k − x′k‖ ‖x′l + t (x′′k − x′k)‖ ≤ 4

n
‖v‖ ,

because ‖x′′k − x′k‖ ≤ 2 and ‖x′l + t (x′′k − x′k)‖ ≤ 1. Thus ‖(∂/∂t)G‖ ≤ 4/n and
similarly ‖(∂/∂s)G‖ ≤ 4/n. Since k 6= l it is clear that

(
∂2/ (∂s∂t)

)
G = 0.

Also∥∥∥∥ ∂∂tg
∥∥∥∥ =

1

n

∥∥∥∥ ∂∂t ((y′k + t (y′′k − y′k)) (x′k + t (x′′k − x′k)))

∥∥∥∥
=

1

n
(|y′′k − y′k| ‖x′k + t (x′′k − x′k)‖+ |y′k + t (y′′k − y′k)| ‖x′′k − x′k‖)

≤ 4

n
,

similarly ‖(∂/∂s) g‖ ≤ 4/n and again
(
∂2/ (∂s∂t)

)
g = 0. We can then apply

Lemma (21) and obtain∥∥∥∥ ∂∂tw
∥∥∥∥ ≤ 4

n
λ−1

(
λ−1/2 + 1

)
≤ 8λ−3/2

n
and∥∥∥∥ ∂2

∂s∂t
w

∥∥∥∥ ≤ 8

n2
λ−2

(
λ−1/2 + 1

)
≤ 32λ−5/2

n2
,

where we used ‖w‖ ≤ λ−1/2.
Now we define

R (s, t) = E
[
(〈w (s, t) , X〉 − Y )

2
]
,

R̂ (s, t) =
1

2

∑
i

(〈w (s, t) , xi (s, t)〉 − yi (s, t))
2
.
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For the expected error we get∣∣∣∣ ∂∂tR (s, t)

∣∣∣∣ ≤ 2E

∣∣∣∣(〈w (s, t) , X〉 − Y )

〈
∂

∂t
w (s, t) , X

〉∣∣∣∣
≤

(
λ−1/2 + 1

) 8λ−3/2

n
≤ 16λ−2

n

and ∣∣∣∣ ∂2

∂s∂t
R (s, t)

∣∣∣∣ ≤ 2E

∣∣∣∣ ∂∂s
(

(〈w (s, t) , X〉 − Y )

〈
∂

∂t
w (s, t) , X

〉)∣∣∣∣
≤ 2E

∣∣∣∣〈 ∂

∂s
w (s, t) , X

〉〈
∂

∂t
w (s, t) , X

〉∣∣∣∣+

+2E

∣∣∣∣(〈w (s, t) , X〉 − Y )

〈
∂2

∂s∂t
w (s, t) , X

〉∣∣∣∣
≤ 256

n2
λ−3.

By a similar, somewhat more tedious, analysis there are absolute constants c1
and c2, such that ∣∣∣∣ ∂∂t (R (s, t)− R̂ (s, t)

)∣∣∣∣ ≤ c1λ
−2

n
and∣∣∣∣ ∂2

∂s∂t

(
R (s, t)− R̂ (s, t)

)∣∣∣∣ ≤ c2λ
−3

n2
.

Now let f (x) =
(
nλ2/c1

) (
R (x)− R̂ (x)

)
. Then

Dk
z′k,z

′′
k
f (z) =

∫ 1

0

∂

∂t
Sk
z′k+t(z′′k−z′k)

f (z) dt ≤ nλ2

c1

∫ 1

0

∣∣∣∣ ∂∂t (R (x)− R̂ (x)
)∣∣∣∣ dt ≤ 1.

In particular f − Ekf ≤ 1. Also

Dl
z′l,z
′′
l
Dk
z′k,z

′′
k
f (z) =

∫ 1

0

∫ 1

0

∂2

∂s∂t
Sl
z′l+s(z′′l −z′l)

Sk
z′k+t(z′′k−z′k)

f (z) dtds

≤ nλ2

c1

∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂s∂t

(
R (x)− R̂ (x)

)∣∣∣∣ dtds ≤ c2
c1

λ−1

n
.

Substitution in the formula gives J (f) ≤ (c2/c1)λ−1. Thus, from Theorem 3,

Pr
{(
R− R̂

)
− E

(
R− R̂

)
> t
}

= Pr
{
f − Ef >

(
nλ2/c1

)
t
}

≤ exp

 −nt2

2nE
[
Σ2
(
R− R̂

)
(X)

]
+ cλ−3t

 .
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5 Appendix: Proofs of the results in section 2.1

Throughout this appendix we adhere to the notation and definitions of section
2.1.

Proof of Lemma 8. Let Af (β) = (1/β) lnZβf . By l’Hospital’s rule we have
limβ→0Af (β) = E [f ]. Furthermore

A′f (β) =
1

β
Eβf [f ]− 1

β2 lnZβf = β−2Sf (β) .

Thus

lnE
[
eβ(f−Ef)

]
= lnZβf − βE [f ] = β (Af (β)−Af (0))

= β

∫ β

0

A′f (γ) dγ = β

∫ β

0

Sf (γ)

γ2
dγ.

Combined with Markov’s inequality this gives the second assertion.
Conditional versions of Eβf and Sf (β) are obtained by replacing the uncon-

ditional expectations E by the operator Ek. Thus, for f, g ∈ A (Ω),

Ek,βf [g] = Z−1
k,βfE

[
geβf

]
with Zk,βf = Ek

[
eβf
]

Sk,f (β) = βEk,βf [f ]− lnZk,βf and

σ2
k,βf [g] = Ek,βf

[
(g − Ek,βf [g])

2
]
.

Then Ek,βf [g], σ2
k,βf [g] and Sk,f (β) are members of Ak (Ω). Observe that

Ek,βf = Ek,βf+fk for any fk ∈ Ak (Ω), a fact which will be frequently used in
the sequel.

Lemma 22 Let h, g > 0 be bounded measurable functions on Ω. Then for any
expectation E

E [h] ln
E [h]

E [g]
≤ E

[
h ln

h

g

]
.

Proof. Define an expectation functional Eg by Eg [h] = E [gh] /E [g]. The
function Φ (t) = t ln t is convex for positive t, since Φ′′ = 1/t > 0. Thus, by
Jensen’s inequality,

E [h] ln
E [h]

E [g]
= E [g] Φ

(
Eg

[
h

g

])
≤ E [g]Eg

[
Φ

(
h

g

)]
= E

[
h ln

h

g

]
.

The heart of the entropy method is the following theorem, which asserts the
subadditivity of entropy.

Theorem 23

Sf (β) ≤ Eβf

[
n∑
k=1

Sk,f (β)

]
(15)
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Proof. Set ρ = eβf/Zβf and write ρ = ρ/E [ρ] as a telescopic product to get

E

[
ρ ln

ρ

E [ρ]

]
= E

[
ρ ln

n∏
k=1

E1...Ek−1 [ρ]

E1...Ek−1Ek [ρ]

]

=
∑

E

[
E1...Ek−1 [ρ] ln

E1...Ek−1 [ρ]

E1...Ek−1 [Ek [ρ]]

]
≤

∑
E

[
ρ ln

ρ

Ek [ρ]

]
= E

[∑
Ek

[
ρ ln

ρ

Ek [ρ]

]]
,

where we applied Lemma 22 to the expectation functional E1...Ek−1. From the
definition of ρ we then obtain

Sf (β) = βEβf [f ]− lnZβf = E

[
ρ ln

ρ

E [ρ]

]
≤ E

[∑
Ek

[
ρ ln

ρ

Ek [ρ]

]]
= E

[
n∑
k=1

(
Ek

[
eβf

Zβf
ln
eβf

Zβf

]
− Ek

[
eβf

Zβf

]
lnEk

[
eβf

Zβf

])]

= Z−1
βf

n∑
k=1

E
[
Ek
[
eβf
]
Sk,f (β)

]
= Z−1

βf

n∑
k=1

E
[
eβfSk,f (β)

]
since Sk,f (β) ∈ Ak (Ω)

= Eβf

[
n∑
k=1

Sk,f (β)

]
.

We combine this with the following fluctuation representation of entropy.

Proposition 24 We have for β > 0

Sf (β) =

∫ β

0

∫ β

t

σ2
sf [f ] ds dt and Sk,f (β) =

∫ β

0

∫ β

t

σ2
k,sf [f ] ds dt.

Proof. Using (d/dβ)Eβf [f ] = σ2
βf [f ] and the fundamental theorem of calculus

we obtain the formulas

βEβf [f ] =

∫ β

0

Eβf [f ] dt =

∫ β

0

(∫ β

0

σ2
sf [f ] ds+ E [f ]

)
dt

and lnZβf =

∫ β

0

Etf [f ] dt =

∫ β

0

(∫ t

0

σ2
sf [f ] ds+ E [f ]

)
dt,

which we subtract to obtain

Sf (β) = βEβf [f ]− lnZβf =

∫ β

0

(∫ β

0

σ2
sf [f ] ds−

∫ t

0

σ2
sf [f ] ds

)
dt

=

∫ β

0

(∫ β

t

σ2
sf [f ] ds

)
dt.
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The same argument gives the second inequality.
Combining Theorem 23 and Proposition 24 we obtain the following, very

useful inequality (Theorem 7 in [14])

Sf (β) ≤ Eβf

[
n∑
k=1

∫ β

0

∫ β

t

σ2
k,sf [f ] ds dt

]
, (16)

which leads to a number of concentration inequalities, when used together with
Lemma 8. The celebrated "bounded difference inequality" (see e.g. McDiarmid
[11], Theorem 3.7), for example, is an almost immediate consequence. We will
also use a simple variational bound on the conditional thermal variance:

σ2
k,βf [f ] ≤ Ek,βf

[
(f − fk)

2
]

= Ek,β(f−fk)

[
(f − fk)

2
]
, ∀fk ∈ Ak (Ω) . (17)

We need two applications of (16). Recall the definition of the real function
ψ (t) := tet − et + 1.
Proof of Lemma 9. For any k ∈ {1, ..., n} , β > 0, letting fk = Ekf in (17),

σ2
k,βf (f) ≤ Ek,β(f−Ekf)

[
(f − Ekf)

2
]

=
Ek

[
(f − Ekf)

2
eβ(f−Ekf)

]
Ek
[
eβ(f−Ekf)

]
≤ Ek

[
(f − Ekf)

2
eβ(f−Ekf)

]
use Jensen on denominator

≤ eβEk

[
(f − Ekf)

2
]
using f − Ekf ≤ 1

= eβσ2
k (f) .

Thus with (16)

Sf (β) ≤ Eβf

[
n∑
k=1

∫ β

0

∫ β

t

σ2
k,sf [f ] ds dt

]
≤
(∫ β

0

∫ β

t

esds dt

)
Eβf

[
Σ2 (f)

]
=

(
βeβ − eβ + 1

)
Eβf

[
Σ2 (f)

]
.

Recall the definition of the operator D : A (⊗)→ A (Ω) by

Dg =
∑
k

(
g − inf

y∈Ωk

Sky g

)2

, for g ∈ A (Ω) .

Proof of Lemma 11. We abbreviate infy∈Ωk
Skyf to infk f . Replacing fk by

infk f in (17) we get

σ2
k,βf [f ] ≤ Ek,βf

[(
f − inf

k
f

)2
]

= Ek,β(f−infk f)

[(
f − inf

k
f

)2
]
.
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We now claim that the right hand side above is a non-decreasing function of
β. Too see this write h = f − infk f and define a real function ξ by ξ (t) =

(max {t, 0})2. By a straighforward computation we obtain

d

dβ
Ek,β(f−infk f)

[(
f − inf

k
f

)2
]

=
d

dβ
Eβh [ξ (h)]

= Eβh [ξ (h)h]− Eβh [ξ (h)]Eβh [h] ≥ 0,

where the last inequality uses the well known fact that for h ≥ 0 and any
expectation E [ξ (h)h] ≥ E [ξ (h)]E [h] whenever ξ is a nondecreasing function.
This establishes the claim.
Using (16) it follows that

Sf (β) ≤ Eβf

[
n∑
k=1

∫ β

0

∫ β

t

σ2
k,sf [f ] ds dt

]

≤ Eβf

[
n∑
k=1

∫ β

0

∫ β

t

Ek,sf

[(
f − inf

k
f

)2
]
ds dt

]

≤ β2

2
Eβf

[
n∑
k=1

Ek,βf

(
f − inf

k
f

)2
]

=
β2

2
Eβf

[
n∑
k=1

(
f − inf

k
f

)2
]
,

where we used the identity EβfEk,βf = Eβf .
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