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Abstract. We propose a method of unsupervised learning from sta-
tionary, vector-valued processes. A low-dimensional subspace is selected
on the basis of a criterion which rewards data-variance (like PSA) and
penalizes the variance of the velocity vector, thus exploiting the short-
time dependencies of the process. We prove error bounds in terms of the
�-mixing coe¢ cients and consistency for absolutely regular processes.
Experiments with image recognition demonstrate the algorithms ability
to learn geometrically invariant feature maps.

1 Introduction

Some work has been done to extend the results of learning theory from indepen-
dent, identically distributed input variables to more general stationary processes
([19], [8], [16]). For suitably mixing processes this extension is possible, with
an increase in sample complexity caused by dependencies which slow down the
estimation process. But some of these dependencies also provide important in-
formation on the environment generating the process and can be turned from a
curse to a blessing, in particular in the case of unsupervised learning, when side
information is scarce and the sample complexity is not as painfully felt.

Consider a stationary stochastic process modeling the evolution of complex
sensory signals by a sequence of zero-mean random variables Xt taking values in
a Hilbert-space H. Let Pd be the class of d-dimensional orthogonal projections
in H. From observation of X0; :::; Xm we seek to �nd some P 2 Pd such that
the projected stimulus PX on average captures the signi�cance implied by the
primary stimulus X 2 H. To guide this search we will invoke two principles of
common sense.
The �rst principle states that signi�cant signals should have a large variance.

In view of the zero-mean assumption this classical idea suggests to maximize

E
h
kPX0k2

i
, which coincides with the objective of PSA1([9], [10], [15]) seeking

to give the perspective with the broadest view of the distribution.

1 Principal Subspace Analysis, sometimes Principal Component Analysis (PCA) is
used synonymously



2

The second principle, the principle of slowness (introduced by Földiak [2],
promoted and developed by Wiskott [17]), states that sensory signals vary more
quickly than their signi�cance. Consider the visual impressions caused by a fa-
miliar complex object, like a tree on the side of the road or a person acting in
a movie. Any motion or deformation of the object will cause rapid changes in
the states of retinal photoreceptors (or pixel-values). Yet the identities of the
tree and the person in the movie remain unchanged. When a person speaks, the
communicated ideas vary much more slowly than individual phonemes, let alone
the air pressure amplitudes of the transmitted sound signal.

The slowness principle suggests to minimize E
�P _X0

2� (here _X is the

velocity process _Xt = Xt � Xt�1), and combining both principles leads to the
objective function

L� (P ) = E
�
� kPX0k2 � (1� �)

P _X0

2� ;
to be maximized, where the parameter � 2 [0; 1] controls the trade-o¤ between
two potentially con�icting goals. In section 4 we will further justify the use of
this objective function and show that for � 2 (0; 1) maximizing L� minimizes an
error bound for a simple classi�cation algorithm on a generic class of classi�cation
problems, and that

p
� can be interpreted as a scale-parameter. When there is

no ambiguity we write L = L�.

As the details of the process X are generally unknown, the optimization has
to rely on an empirical basis. Let (X)m0 = (X0; :::; Xm) be m + 1 consecutive
observations of the process X and de�ne an empirical analogue L̂ (P ) of the
objective function L

L̂ (P ) =
1

m

mX
i=1

�
� kPXik2 � (1� �)

P _Xi

2� :
We now propose to seek P 2 Pd to maximize L̂ (:). This optimization problem,
its analysis, algorithmic implementation and preliminary experimental tests are
the contributions of this paper.

Existence of Solutions. We will require the general boundedness assump-
tion that kXtk � 1=2 a.s. De�ne an operator T on H by

Tz = E
h
� hz;XiX � (1� �)

D
z; _X

E
_X
i
for z 2 H: (1)

Then T = �CX � (1� �)C _X , where CX and C _X are the covariance operators
corresponding to X and _X respectively. The empirical counterpart to T is T̂
de�ned by

T̂ z =
1

m

mX
i=1

�
� hz;XiiXi � (1� �)

D
z; _Xi

E
_Xi

�
: (2)
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The operators T and T̂ are central objects of the proposed method. They are
both symmetric and compact, T is trace-class and T̂ has �nite rank. If � 2 (0; 1)
they will tend to have both positive and negative eigenvalues. The following
Theorem (see section 2) shows that a solution of our optimization problem can
be obtained by projecting onto a dominant eigenspace of T̂ .

Theorem 1. Fix � 2 [0; 1] and let �̂1 � �̂2 � ::: � 0 be the nonnegative eigen-
values of T̂ , and (ei) the sequence of associated eigenvectors. Then

max
P2Pd

L̂ (P ) =
dX
i=1

�̂i;

the maximum being attained when P is the orthogonal projection onto the span
of e1; :::; ed.

This leads to a straightforward batch algorithm: Observe and store a realiza-
tion of (X0; :::; Xm), construct T̂ , �nd eigenvectors and eigenvalues and project
onto the span of d orthonormal eigenvectors corresponding to the largest eigen-
values.
Such a solution P need not be unique. In fact, if � = 0 and dim (H) = 1,

then T̂ is a nonpositive operator with in�nite dimensional nullspace, and there
is an in�nity of mutually orthogonal solutions, from which an arbitrary choice
must be made. This can hardly be the way to extract meaningful signals, and the
utility of the objective function with � = 0 is questionable for high-dimensional
input spaces. Except for very pathological cases, this extreme degeneracy is
absent in the case � > 0. In the generic, noisy case all nonzero eigenvalues will
be distinct and if m is large then there are more than d positive eigenvalues of
T̂ , so that the solution will be unique.

Estimation. Having found P to maximize L̂ (:), can we be con�dent that
L (P ) is also nearly maximal, and how does this con�dence improve with the
sample size?
These questions are complicated by the interdependence of observations, in

particular by the possibility of being trapped for longer periods of time. Since
we want to estimate an expectation on the basis of a temporal average, some
sort of ergodicity property of the process X will be relevant. Our bounds are
expressed in terms of the mixing coe¢ cients � (a), which roughly bound the
interdependence of past and future variables separated by a time interval of
duration a. Combining the techniques developed in [11] and [19] we arrive at the
following result:

Theorem 2. With the assumptions already introduced above, �x � > 0 and let
m;a 2 N, a < m=2 and l = bm=2ac and � (a) < �= (2l). Then with probability
greater 1� � in the sample (X)m0 = (X0; :::; Xm) we have

sup
P2Pd

���L̂ (P )� L (P )��� � 4p
l

 
p
d+

s
1

2
ln

1

�=2� l� (a� 1)

!
:
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If the mixing coe¢ cients � are known, then the right hand side can be min-
imized with an appropriate choice of a, which in general depends on the sample
size (or total learning time) m. For easy interpretation assume � (a) = 0 for
a � a0. Then we can interpret a0 as the mixing time beyond which all corre-
lations vanish. If we set a = a0 + 1 above, the resulting bound resembles the
bound for the iid case with an e¤ective sample size l = bm= (2 (a0 + 1))c. This
shows the ambiguous role of temporal dependencies: Over short time intervals
they are bene�cial, providing us with information which allows us to go beyond
PSA by using the slowness principle. Over long periods of time they get in the
way of mixing and become detrimental to learning.

Often the mixing coe¢ cients are unknown, but one knows (or assumes or
hopes) that X is absolutely regular, that is � (a) ! 0 as a ! 1. We can then
still establish learnability in the sense of convergence in probability:

Theorem 3. If X is absolutely regular then for every � > 0 we have

lim
m!1

Pr

�
sup
P2Pd

���L̂ (P )� L (P )��� > �

�
= 0:

We will prove both theorems in section 3.

A major problem caused by large observation times is the accumulating mem-
ory requirement to store the sample data, as long as we adhere to the batch
algorithm sketched above. For this reason we use an online-algorithm for our
experiments in image processing. The algorithm, a modi�cation of an algorithm
introduced by Oja [9], is brie�y introduced in section 5. We apply it either
directly to the image data or to train the second layer of a two-layered radial-
basis-function network.
The experiments reported in section 6 involve processes with speci�c geomet-

ric invariants: Consider rapidly rotating views of a slowly changing scene. The
projection returned by our algorithm then performs well as a preprocessor for
rotation invariant recognition. An analogous behaviour was observed for scale-
invariance, and it might be conjectured that similar mechanisms could account
for the ubiquity of scale invariant perception in biological vision.
A similar technique has been proposed by Wiskott [17]. It is missing an ana-

logue of a positive variance term in the objective function. The problem of poten-
tially trivial solutions is circumnavigated by an orthonormalization prescription
(whitening) of the covariance matrix prior to the subspace search, which then
essentially seeks out a minimal subspace of the velocity covariance. In high (or
in�nite) dimensions minimal subspace analysis of (compact positive) operators
should cause the above-mentioned degeneracy problem, because the eigenvalues
will concentrate at zero. In [17] a corresponding problem is in fact mentioned.
Also the orthonormalization increases the norms of the input vectors as the di-
mension grows, making it di¢ cult to analyse the generalisation behaviour. In
our approach all these problems are eliminated by a positive variance term,
corresponding to � > 0.
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2 Preliminaries

For the next sectionsH will be a real separable in�nite-dimensional Hilbert space
with norm k:k and inner product h:; :i. In practice H will be �nite dimensional,
but as the dimension is large and should not enter into our results we may as well
assume in�nite-dimensionality, which will also eliminate some complications.

2.1 Hilbert Schmidt operators

With H2 we denote the real vector space of symmetric operators on H satisfyingP1
i=1 kTeik

2
< 1 for every orthonormal basis (ei)

1
i=1 of H. For S; T 2 H2 the

number hS; T i2 = Tr (TS) de�nes an inner product on H2, making it into a
Hilbert space with norm kTk2 = hT; T i

1=2
2 . The members of H2 are compact and

called Hilbert-Schmidt operators (see Reed and Simon [12] for background on
functional analysis). For every v 2 H we de�ne an operator Qv by

Qvx = hx; vi v for all x 2 H:

The set of d-dimensional, orthogonal projections in H is denoted with Pd. The
following facts are easily veri�ed (see [5]):

Lemma 1. Let x; y 2 H and P 2 Pd. Then (i) Qx 2 H2 and kQxk2 = kxk2,
(ii) hQx; Qyi2 = hx; yi

2, (iii) hP;Qxi2 = kPxk
2 and (iv) kPk2 =

p
d.

In terms of the Q-operators we can rewrite the operators T and T̂ in (1) and
(2) as

T = E [�QX � (1� �)Q _X ] and T̂ =
1

m

mX
i=1

�
�QXi � (1� �)Q _Xi

�
.

Using (iii) above, the objective functionals L (:) and L̂ (:) become

L (P ) = hT; P i2 and L̂ (P ) =
D
T̂ ; P

E
2
:

Let �̂1 � �̂2 � ::: � 0 be any nonincreasing enumeration of the nonnegative
eigenvalues of T̂ , counting multiplicities, and (ei) a corresponding orthonormal
sequence of eigenvectors. Note that the sequence is necessarily in�nite because
T̂ has �nite rank and thus an in�nite-dimensional null-space. Now let P 2 Pd.
Since P has the eigenvalue 1 with multiplicity d and all its other eigenvalues are
zero, it follows from Horn�s theorem [14, Theorem 1.15] that

D
T̂ ; P

E
2
�

dX
i=1

�̂i.
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If P is the projection onto the span of e1; :::; ed then this becomes an equality.
This shows that any such maximal projection P is also a maximizer for L̂ (P )
and that

max
P2Pd

L̂ (P ) =
dX
i=1

�̂i,

thus proving Theorem 1.
These arguments are fairly standard, but in the in�nite dimensional case

there are some pitfalls resulting from non-positivity. For example the above is not
generally true for the operator T corresponding to the true objective functional
L, because it may happen that T has fewer than d nonnegative eigenvalues, or
none at all. Since all negative eigenvalues converge to 0, the supremum might
not be attained.

2.2 Mixing coe¢ cients and inequalities

Let � = f�tgt2Z be a stationary stochastic process with values in a measurable
space (
;�) and with law �. For A � Z let �A denote the �-algebra generated
by the variables �t with t 2 A, and use �A to denote the marginal distribution
of � on

�

A; �A

�
.

De�nition 1. For k 2 N de�ne the mixing coe¢ cient

�� (k) = E
�
sup

���� �Bj�ft:t�lg�� � (B)�� : B 2 �ft:t�l+kg	� :
The process � is called absolutely regular or �-mixing if �� (k)! 0 as k !1.

The interpretation is as follows: The random variable

sup
���� �Bj�ft:t�lg�� � (B)�� : B 2 �ft:t�l+kg	

gives the largest change in the probability of any future event B occurring when
a speci�c realization of the past is unveiled. It therefore measures the maximal
dependence of the future ft � l + kg on the past ft � lg, as a function of the
past. Taking the expectation of this variable leads to a quantity which is itself
independent of the past but takes the probabilities of di¤erent realizations of
the past into account (see the book by Rio [13] for a general theory of weakly
dependent processes). From this de�nition one can prove the following (Yu [19]):

Lemma 2. Let � = f�tgt2Z be stationary with values in a measurable space
(
;�) and B 2 �f1;:::;mg. Then����f1;:::;mg (B)� ��f1g�m (B)��� � (m� 1)�� (1) :
We will also need the following lemma of Vidyasagar [16, Lemma 3.1]:

Lemma 3. Suppose � (k) # 0 as k ! 1. It is possible to choose a sequence
famg such that am � m, and with lm = bm=amc we have that lm ! 1 while
lm� (am)! 0 as m!1.
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3 Generalization

We �rst prove a general result for vector-valued processes. For two subsets
V;W � H of a Hilbert space H we introduce the following notation

kV k = sup
v2V

kvk and jhV;W ij = sup
v2V;w2W

jhv; wij :

Theorem 4. Let V;W � H and X = fXtgt2Z a stationary, mean zero process
with values in V .
1. Fix � > 0 and let m;a 2 N, a < m=2 and l = bm=2ac and � (a) < �= (2l).

Then with probability greater than 1� � we have

sup
w2W

����� 1m
mX
i=1

hw;Xii
����� � 2p

l

 
kV k kWk+ jhV;W ij

s
1

2
ln

1

�=2� l�X (a)

!
:

2. If X is absolutely regular then for every � > 0

Pr

(
sup
w2W

����� 1m
mX
i=1

hw;Xii
����� > �

)
! 0 as m!1:

If we let W be the unit ball in H we immediately obtain the following

Corollary 1. Under the �rst assumptions of Theorem 4 we have with probability
greater 1� � that 1m

mX
i=1

Xi

 � 2 kV kp
l

 
1 +

s
1

2
ln

1

�=2� l�X (a)

!
:

If in addition Xt is absolutely regular then k(1=m)
Pm

i=1Xik ! 0 in probability.

Here is a practical reformulation with trivial proof:

Corollary 2. Theorem 4 and Corollary 1 remain valid if the mean-zero assump-
tion is omitted, Xi is replaced by Xi�E [X1] and kV k and jhV;W ij are replaced
by 2 kV k and 2 jhV;W ij respectively.

To prove Theorem 4 we �rst establish an analogous result for iid Xi (essen-
tially following [11]) and then adapt it to dependent variables.

Lemma 4. Let V;W � H be and X1; :::; Xm iid zero-mean random variables
with values in V . Then for � and m such that kWk kV k <

p
m� we have

Pr

(
sup
w2W

����� 1m
mX
i=1

hw;Xii
����� > �

)
� exp

 
� (
p
m�� kV k kWk)2

2 jhV;W ij2

!
:
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Proof. Consider the average �X = (1=m)
Pm

1 Xi. With Jensen�s inequality and
using independence we obtain

�
E
��X��2 � E h�X2i = 1

m2

mX
i=1

E
h
kXik2

i
� kV k2 =m:

Now let f : V m ! R be de�ned by f (x) = supw2W j(1=m)
Pm

1 hw; xiij. We
have to bound the probability that f > �. By Schwartz� inequality and the
above bound we have

E [f (X)] = E
�
sup
w2W

��
w; �X���� � kWkE ��X� � �1=pm� kWk kV k : (3)

Let x 2 V m be arbitrary and x0 2 V m be obtained by modifying a coordinate
xk of x to be an arbitrary x0k 2 V . Then

jf (x)� f (x0)j � 1

m
sup
w2W

jhw; xki � hw; x0kij �
2

m
jhV;W ij :

By (3) and the bounded-di¤erence inequality (see [7]) we obtain for t > 0

Pr

�
f (X) >

kWk kV kp
m

+ t

�
� Pr ff (X)� E [f (X)] > tg � exp

 
�mt2

2 jhV;W ij2

!
:

The conclusion follows from setting t = �� (1=
p
m) kWk kV k �

The proof of Theorem 4 now uses the techniques introduced by Yu [19] (see
also Meir [8] and Lozano et al [3]).

Proof (of Theorem 4). Select a time-scale a 2 N, 2a < m and represent the
discrete time axis as an alternating sequence of blocks

Z = (:::; H�1; T�1;H0; T0;H1; T1; :::;Hk; Tk; :::) ;

where each of the Hk and Tk has length a,

Hk = f2ka; :::; 2ka+ a� 1g and Tk = f(2k + 1) a; :::; (2k + 1) a+ a� 1g :

We now de�ne the blocked processes XH and XT with values in co(V ) by XH
t =

(1=a)
P

j2Ht
Xj and XT

t = (1=a)
P

j2Tt Xj . By stationarity the XH
i and XT

i are
identically distributed and themselves stationary. Because of the gaps of size a
we have �XH (1) = �XT (1) = �X (a). We can now write

(1; :::;m) = (H1; T1;H2; T2; :::;Hl; Tl; R) ;
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where the number l of block-pairs is chosen so as to minimize the size of the
remainder R, so l = bm= (2a)c and jRj < 2a. For arbitrary � > 0 we obtain

Pr

(
sup
w2W

����� 12al
2alX
i=1

hw;Xii
����� > �

)

= Pr

(
sup
w2W

����� 12l
lX
i=1



w;XH

i

�
+
1

2l

lX
i=1



w;XT

i

������ > �

)

� Pr
(
sup
w2W

����� 12l
lX
i=1



w;XH

i

������+ sup
w2W

����� 12l
lX
i=1



w;XT

i

������ > �

)

= 2Pr

(
sup
w2W

�����1l
lX
i=1



w;XH

i

������ > �

)

� 2 exp

0B@�
�p

l�� kV k kWk
�2

2 jhV;W ij2

1CA+ 2l�X (a) :
The last inequality follows from the mixing Lemma 2, �XH (1) = �X (a), the iid
case Lemma 4 and the fact that kco (V )k = kV k and jhco (V ) ;W ij = jhV;W ij.
To deal with the remainder R, note that

Pr

(
sup
w2W

����� 1m
mX
i=1

hw;Xii
����� > �

)
� Pr

(
sup
w2W

����� 12al
2alX
i=1

hw;Xii
�����+ kV k kWkl

> �

)
:

We thus obtain

Pr

(
sup
w2W

����� 1m
mX
i=1

hw;Xii
����� > �

)

� 2 exp

0B@�
�p

l��
�
1 + 1p

l

�
kV k kWk

�2
2 jhV;W ij2

1CA+ 2l�X (a) : (4)

Solving for � and using
�
1 + 1=

p
l
�
� 2 gives the �rst conclusion.

If X is absolutely regular then � (a) # 0 as a!1. Choosing a subsequence
am as in Lemma 3 we have lm = bm= (2a)c ! 1 and lm� (am)! 0. Substituting
lm for l and am for a above, the bound (4) will go to zero as m ! 1, which
proves the second conclusion �
Now it is easy to prove the bounds in the introduction by applying Theorem

4 to the stationary operator-valued stochastic process

At = �QXt
� (1� �)Q _Xt

; (5)

which we reinterpret as a vector-valued process with values in the Hilbert space
H2 of Hilbert-Schmidt operators. Note that T = E [A1] and T̂ = (1=m)

Pm
1 Ai.
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Proof (of Theorem 2 and Theorem 3). : First note that �A (a) = �X (a� 1),
because At depends also on Xt�1, and that A is absolutely regular if X is. Set
W = Pd and de�ne V � H2 by

V = f�Qx � (1� �)Qx : kxk � 1 and kyk � 1g :

Then At 2 V a.s. By Lemma 1 (i), V is contained in the unit ball in H2 and

jhV;W i2j = sup
P2Pd

sup fjhP; �Qx � (1� �)Qxi2j : kxk � 1; kyk � 1g

� sup
P2Pd

sup
n
� kPxk2 + (1� �) kPyk2

o
� 1:

By Lemma 1 (iv) kWk2 =
p
d. We also have

sup
P2Pd

���L̂ (P )� L (P )��� = sup
P2Pd

����� 1m
mX
i=1

hP;Ai � E [A1]i2

����� :
Applying Corollary 2 to the process At�E [A1] gives both Theorem 2 and 3 �.

4 A Generic Error Bound

Now we show that maximizing L minimizes an error-bound for all classi�ca-
tion tasks posessing a certain continuity property. We �x a stationary process
� = f�tgt2Z with values in a measurable space (
;�), law � and marginal dis-
tributions �I for I � Z.

De�nition 2. Let � be as above. An (at most) countable partition 
 =
S
k Ek

of 
 into disjoint measurable Ek is continuous w.r.t. X if for all k and all
A;B � Ek we have

�f0g (A)�f0g (B) � �f0;1g (A;B) .

So knowledge that Ek occurs at time 0 increases the probability at time 1 for
any event A implying Ek. For an example let 
 be the unit interval, fEkg any
partition of 
 into intervals of diameter less than 1/2 and Xt a Gaussian random
walk with periodic boundary conditions. Unlike the mixing properties relevant
for generalization, the notion of continuity is concerned only with process de-
pendencies on a microscopic time-scale.

We now assume that the process X has the form Xt = � � �t, where � :

 ! H is a a feature map with k�k � 1=2 and E [� � �t] = 0. One easily veri�es
�X (k) � �� (k), for all k. The feature map � may hide important information
such as labels, for example if 
 = X � Y and � (x; y) =  (x).
Suppose now that fEkg is a partition of 
, with each Ek de�ning some

pattern class. Given a pair (!1; !2) drawn from �2f0g we have to decide if !1 and
!2 belong to the same class, that is to decide if there is some k such that x 2 Ek
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and y 2 Ek. In the absence of other known structure we use a simple metric
decision rule based on the projected input and the distance threshold

p
�.

!1 and !2 are in the same class i¤ kP� (!1)� P� (!2)k2 < �.

Error bounds for this rule can be converted into error bounds for simple metric
classi�ers, whenever we are provided with examples for the various Ek.

Theorem 5. With �, � and X as above and � 2 (0; 1), if fEkg is continuous
w.r.t. �, then the error probability for the above rule, as !1 and !2 are drawn
independently from �f0g, is bounded by

Err � 1

1� �

�
1� 2

�
L� (P )

�
�R

where R =
P

k

�
�f0g (Ek)

�2
.

The theorem implies a rule to select the trade-o¤ parameter �: It should
be chosen to minimize the �rst term in the bound above, so � should be close
to 0, but a positive value for L� (P ) should still be obtained, corresponding to
positive eigenvalues of the operator T .

Proof. We use the notation � = � (!1; !2) := kP� (!1)� P� (!2)k2. Then

Err =
X
k;l:k 6=l

E�2f0g [1�<�1Ek�El ] +
X
k

E�2f0g [1���1Ek�Ek ]

= E�2f0g [1�<�] + 2
X
k

E�2f0g [1���1Ek�Ek ]�R

� E�2f0g

�
1��
1� �

�
+ 2

X
k

E�2f0g

�
�

�
1Ek�Ek

�
�R

� 1

1� � �
1

1� �E�
2
f0g
[�] +

2

�

X
k

E�f0;1g [� 1Ek�Ek ]�R:

The �rst inequality uses the bounds 1�<� � (1��) = (1� �) and 1��� � �=�,
which hold since � 2 [0; 1]. The other inequality uses the continuity property
of the Ek-system, because for any nonnegative function g = g (!1; !2) and any
k we have

E�2f0g [g 1Ek�Ek ] � E�f0;1g [g 1Ek�Ek ] ;
as can be shown directly from De�nition 2 by an approximation with simple
functions. Now we useX

k

E�f0;1g [� 1Ek�Ek ] � E�f0;1g [�] = E
�P _X1

2� = E �P _X0

2�
and the identity E�2f0g [�] = 2E

h
kPX0k2

i
, which follows from the mean-zero

assumption, to obtain

Err � 1

1� � �
2

1� �E
h
kPX0k2

i
+
2

�
E
�P _X0

2��R �
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5 An Online Algorithm

In practice H will be �nite-dimensional. If the process X is slowly mixing, the
learning time m can be quite large, leading to excessive storage requirements
for any kind of batch algorithm. For this reason we used an online algorithm for
principal subspace analysis, to which every successive realization of the operator
valued variable At = (1� �)QXt � �Q _Xt

was fed, for t = 1; :::;m. This takes
us somewhat astray from the results proved in this paper, and would require a
di¤erent analysis in terms of stochastic approximation theory (see Benveniste et
al [1]), an analysis which we cannot provide at this point. The principal goal of
our �rst experiments was to test the value of our objective function L.
If v = (v1; :::; vd) is an orthonormal basis for the range of some P 2 Pd, the

Oja-Karhunen �ow [9], is given by the ordinary di¤erential equation

_vk = (I � Pv)Tvk;

where Pv is the projection onto the span of the vk. If T is symmetric it has been
shown by Yan et al [18] that a solution v (t) to this di¤erential equation will
remain forever on the Stiefel-manifold of orthonormal sets if the initial condition
is orthonormal, and that it will converge to a dominant eigenspace of T for
almost all initial conditions. Discretizing gives the update rule

vk (t+ 1) = vk (t) + � (t)
�
I � Pv(t)

�
Tvk (t) ;

where � (t) is a learning rate. Unfortunately a careful analysis shows that the
Stiefel manifold becomes unstable if T is not positive. The simplest solution
to this problem lies in orthonormalization. This is what we do, but there are
more elegant techniques and di¤erent �ows have been proposed (see e.g. [4]) to
extract dominant eigenspaces for general symmetric operators. We now replace
T = E [At] by the process variable At to obtain the �nal rule

vk (t+ 1) = vk (t) + � (t)
�
I � Pv(t)

� �
(1� �)QXt

� �Q _Xt

�
vk (t) ; (6)

which, together with the orthonormalization prescription, gives the algorithm
used in our experiments. The update rule (6) can be considered a combination
of Hebbian learning of input data with anti-Hebbian learning of input velocity.

6 Experiments

We applied our technique to train a preprocessor for image recognition. In all
these experiments we used the output dimension d = 10, and the trade-o¤ pa-
rameter � = 0:8.
To train the algorithm we generated di¤erent input processes � to produce

sequences of 28x28-pixel, gray-scale images, normalized to unity in the euclidean
norm of R28�28. These processes are described below.
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We considered two possible architectures for the preprocessor: In the linear
case we used the pixel vectors directly as inputs to our algorithm, that is X = �
and H = R28�28.
In the nonlinear case (RBF) we used our algorithm to train the second layer

of a two-layered radial-basis-function network. In an initial training phase a large
number (2000) of prototypes �i for the �rst layer were chosen from the process
� at time intervals larger than the mixing time and kept �xed afterwards. De�ne
a kernel � on R28�28 � R28�28 by

� (�1; �2) = exp
�
�� k�j � �k228�28

�
;

where in practice we always use � = 4. The �rst network layer then implements
the (randomly chosen) nonlinear map � : R28�28 ! R2000 given by

� (�)k =
2000X
j=1

G
�1=2
kj � (�j ; �) ; for � 2 R28�28,

where G is the Gramian Gij = � (�i; �j), which is generically non-singular. The
transformation through G

�1=2
kj is chosen to ensure that h� (�i) ; � (�j)i2000 =

� (�i; �j). We then applied the algorithm to the output of the �rst layer, so
X = � (�) and H = R2000.

The processes are designed to train speci�c geometric invariants. Fix a large
image I with periodic boundary conditions. At any time t the 28x28-process
image �t is a mapped subimage of I and completely described by four parameters:
The position xt = (xt; yt) of �t within the source image, a rotation angle rt and
a scale st in the interval [1=2; 3=2]. We can thus write �t = � (xt; rt; st) and we
initialize to �0 = � (0; 0; 1). Given �t we �nd �t+1 by

�t+1 = � (xt +Dx; rt +Dr; st +Ds) ;

where it is understood that the additions on xt and rt respect the periodic
boundary conditions, and the addition on st restricts to the interval [1=2; 3=2].
The Dx; Dr;Ds are random variables de�ning the essential geometric properties
of the process. Here we report two cases, corresponding to the training of rotation
and scale invariance. There were no experiments with translation invariance yet.
To train rotation invariance: The distribution of Dr is uniform on [��; �]

and the distribution of Ds is uniform on [�0:01; 0:01]. Rapidly changing orien-
tation, small changes in scale.
To train scale invariance: The distribution ofDr is uniform on [�0:01; 0:01]

and the distribution of Ds is uniform on [�1; 1]. Rapidly changing scale, small
changes in orientation.
The choice of the distribution of Dx is critical, with qualitative aspects of

the exploration-exploitation dilemma. If we chose N
�
0; �2

�
(normal, centered

with width �) the centers of � will take a random walk with average stepsize �.
If � is large (rapid exploration) the translation obliterates the e¤ect of rotation
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Fig. 1. ROC curves for the metric as a detector of class-equality for (left) rotation-
and (right) scale-invariant character recognition.

or scaling, we loose continuity and the performance degrades. If � is small (in-
tense exploitation) the mixing time becomes large, causing exessive total learn-
ing times. We used � = 1=2 in pixel units. With these parameter settings and
a dynamic learning rate of � (t) = 102

104+t the system was trained on m = 106

observations.
The performance of the resulting preprocessors is tested on a real life problem,

the rotation- (scale-)-invariant recognition of characters. To this end two test-
sets were prepared containing images of the digits 0-8 (0-9) in 100 randomly
chosen states of orientation (scaling between 1/2 and 3/2).
An important criterion for the quality of a preprocessor is the ability of the

distance between preprocessed examples to serve as a detector for class-equality.
Figure 1 shows corresponding receiver-operating-characteristics. The area under
these curves then estimates the probability that for four independently drawn
examples ka1 � b1k10 � ka2 � b2k10, given that a1 and b1 belong to the same,
and a2 and b2 to di¤erent classes. We also give a practical measure by recording
the error rate of a single-example-per-class nearest-neighbour classi�er, trained
on a randomly selected example for each pattern class, Error in the following
table.

Invariance Type Method used ROC-Area Error
Raw Data 0.597 0.716

Rotation Linear 0.987 0.126
RBF 0.983 0.138
Raw Data 0.690 0.508

Scaling Linear 0.866 0.421
RBF 0.989 0.100
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In the case of rotation invariance, the linear preprocessor architecture even
slightly outperformed the RBF network. The latter showed stable good perfor-
mance in both cases.
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