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Abstract. Bounds are given for the empirical and expected Rademacher
complexity of classes of linear transformations from a Hilbert space H to
a �nite dimensional space. The results imply generalization guarantees
for graph regularization and multi-task subspace learning.

1 Introduction

Rademacher averages have been introduced to learning theory as an e¢ cient
complexity measure for function classes, motivated by tight, sample or dis-
tribution dependent generalization bounds ([10], [2]). Both the de�nition of
Rademacher complexity and the generalization bounds extend easily from real-
valued function classes to function classes with values in Rm, as they are relevant
to multi-task learning ([1], [12]).
There has been an increasing interest in multi-task learning which has shown

to be very e¤ective in experiments ([7], [1]), and there have been some general
studies of its generalisation performance ([4], [5]). For a large collection of tasks
there are usually more data available than for a single task and these data may be
put to a coherent use by some constraint of �relatedness�. A practically interesting
case is linear multi-task learning, extending linear large margin classi�ers to
vector valued large-margin classi�ers. Di¤erent types of constraints have been
proposed: Evgeniou et al ([8], [9]) propose graph regularization, where the vectors
de�ning the classi�ers of related tasks have to be near each other. They also show
that their scheme can be implemented in the framework of kernel machines.
Ando and Zhang [1] on the other hand require the classi�ers to be members
of a common low dimensional subspace. They also give generalization bounds
using Rademacher complexity, but these bounds increase with the dimension of
the input space. This paper gives dimension free bounds which apply to both
approaches.

1.1 Multi-task generalization and Rademacher complexity

Suppose we have m classi�cation tasks, represented by m independent random
variables

�
X l; Y l

�
taking values in X�f�1; 1g, where X l models the random



2

occurrence of input data in some input space X , and Y l models the corresponding
binary output for learning task l 2 f1; :::;mg. The draw of an iid sample for the l-
th task is described by a sequence

�
X l
i ; Y

l
i

�n
i=1

of independent random variables,
each identically distributed to

�
X l; Y l

�
. Write (X;Y) for the combined random

variable taking values in Xmn � f�1; 1gmn.
One now seeks a function f =

�
f1; :::; fm

�
: X ! Rm such that predicting Y l

to be sgn
�
f l
�
is correct with high average probability. To this end one searches

a function class F of functions f : X ! Rm for a member with a small average
empirical error estimate. The choice of the function class F expresses the con-
straints of �relatedness�which we want to impose. This procedure is justi�ed by
the following result. ([1], [12]):

Theorem 1. Let � be the function on R de�ned by

� (t) =

8<: 1 if t � 0
1� t if 0 � t � 1
0 if 1 � t

:

Let F be a class of functions f =
�
f1; :::; fm

�
: X ! Rm and �x � > 0. Then

with probability greater than 1� � we have for all f 2 F

1

m

mX
l=1

Pr
�
sgn

�
f l
�
X l
��
6= Y l

	
� 1

mn

mX
l=1

nX
i=1

�
�
Y lf l

�
X l
i

��
+ R̂m

n (F) (X) +
r
9 ln (2=�)

2mn
:

The �rst term on the right hand side is an empirical large-margin error
estimate. Selecting a function class F means that we make a bet that we will be
able to �nd within F a solution with a reasonably low value for this term. The
other two terms bound the estimation error. The last term decays quickly with
the product mn and depends only logarithmically on the con�dence parameter �
and will not concern us very much. The remaining term is a complexity measure
of the class F when acting on the data set X.

De�nition 1. For l 2 f1; :::;mg and i 2 f1; :::; ng let �li be independent random
variables, distributed uniformly in f�1; 1g. The empirical Rademacher complex-
ity of a class F of functions f : X ! Rm is the function R̂m

n (F) de�ned on Xnm

by

R̂m
n (F) (x) = E�

"
sup

f=(f1;:::;fm)2F

2

mn

mX
l=1

nX
i=1

�lif
l
�
xli
�#
:

Theorem 1 above explains the value of bounds on this function, the prin-
cipal subject of this paper. There is also a version of Theorem 1 involving the

expectation EX
h
R̂m
n (F) (X)

i
with a slightly better �nal term. We have re-

stricted ourselves to classi�cation for de�niteness. Substitution of our results in
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other generalization bounds using Rademacher complexities should make them
applicable to multi-task regression.

1.2 Bounds on the Rademacher complexity

This paper assumes that the input space X is contained in the closed unit ball
of a real separable Hilbert space H (�xed from now on) and that F is a class of
bounded linear transformations V : H ! Rm. Such transformations correspond
to m-tuples

�
v1; :::; vm

�
2 Hm of vectors in H such that the l-th component of

V is given by V (x)l =


vl; x

�
(we denote this by V $

�
v1; :::; vm

�
). Thresh-

olding the functional x !


vl; x

�
gives the classi�er for the l-th task. The as-

sumption


X l



 � 1 is also a notational convenience, but we would always need
E
h

X l



2i < 1 for part (I) and E
h

X l



4i < 1 for part (II) of the following

theorem, which is the main contribution of this work.

Theorem 2. Let F be a set of linear transformations V : H ! Rm and x 2
Hmn with



xli

2 � 1.
(I) Then for every positive de�nite operator A on Rm

R̂m
n (F) (x) �

2p
n
sup
V 2F

 

A1=2V 


2p

m

!r
tr (A�1)

m
:

(II) Let p 2 [4;1] and let q be the conjugate exponent, that is p�1+ q�1 = 1.
Then

R̂m
n (F) (x) �

2p
n
sup
V 2F

�kV kqp
m

�s


Ĉ (x)



p=2
+

r
2

m

and

E
h
R̂m
n (F) (X)

i
� 2p

n
sup
V 2F

�kV kqp
m

�s
kCmkp=2 +

r
3

m

Here Ĉ (x) is the empirical covariance operator of the data set x, that is the
covariance operator corresponding to the empirical distribution 1= (mn)

P
l;i �xli

on H, while Cm is the covariance operator corresponding to the mixture of
data-distributions1 . Cm = (1=m)Cl, where Cl is the covariance operator for
the data-distribution of the l-th task. The Schatten-norms k:::kp are de�ned for
compact operators T by

kTkp =
 X

i

�pi

!1=p
;

1 Here �x is the unit mass concentrated at x
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where the �i are the singular values of T . The norms kTkp are a decreasing
function in p. See section 2 for more detailed de�nitions. For V $

�
v1; :::; vm

�
:

H ! Rm we have

kV k2 =
 X

l



vl

2!1=2 :
1.3 Interpretation of the bounds

Each of the bounds in Theorem 2 has been grouped in three factors: The factor
2=
p
n is important, because it insures learnability as long as the other two factors

remain bounded or increase slowly enough with the sample size n.
Next comes a regularization factor depending on F and a norm, which en-

codes the relatedness-constraint. Equating the supremum to some chosen con-
stant B de�nes a maximal function class F which is necessarily convex. The �rst
bound for example gives rise to the function class F =

�
V : m�1=2 

A1=2V 



2
< B

	
.

For such classes the constant B can of course be substituted for the supremum,
giving the bounds a simpler appearance. The m�1=2 will typically be cancelled
by allowing the individual functional components vi of V $

�
v1; :::; vm

�
2 F

to have norm of unit order on average, that is kV k22 =
P

l



vl

2 = O (m) or

A1=2V 

2
2
= O (m).

The third factor gives the bound proper and depends on the situation studied.
It will typically decrease to some limiting positive value, as the number of tasks
m increases.

If we set A = I then part (I) above can be recognized as a trival extension of
existing bounds ([2]) for single task linear large margin classi�ers. It corresponds
to the noninteracting case, essentially equivalent to single task learning. If we
set A = L+ �I, where L is the Laplacian on a graph with m vertices, and � > 0
a small regularization constant, then we obtain bounds to justify the graph
regularization schemes in [9], concisely relating generalization to the spectrum
of the Laplacian. This will be explained in some detail in section 3.

Part (II) of the theorem can be applied to subspace learning. The norms
kTkp can be viewed as combined measures of amplitude and dimensionality (or
rank if T has �nite dimensional range), and imposing a bound on kV kq is a
combined form of amplitude and dimensional regularization. The conceptually
simplest way to do this is to consider the class FB;d of transformations V $�
v1; :::; vm

�
such that kV k22 =

P
l



vl

2 � B2m and rank (V ) � d (a notation
which extends to the case d =1). Then all the individual linear classi�ers vl are
constrained to lie in some d-dimensional subspace of H. This subspace can be
freely chosen after seeing the data, so the above bounds become generalisation
guarantees for subspace selection through multitask learning. This corresponds
to the regularization in [1]. In this case the regularization factor can be shown
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to be equal to

sup
V 2FB;d

�kV kqp
m

�
= Bd

2�q
2q = Bd

p�2
2p :

If p = q = 2 then this is just B and there will be no penalty on dimension.
Correspondingly the bound will exhibit no bene�t from constraining d. If p = 4
and q = 4=3 then we obtain Bd1=4 and for p = 1 and q = 1 it is Bd1=2,
corresponding to increasing penalties on the dimensionality. The class FB;d is
practical and corresponds to the scheme in [1], but it is not convex, while setting

F =
n
V : kV kq � B

o
and replacing � by the hinge loss always results in a convex

optimization problem.
The data- or distribution dependent third factor in (II) contains two terms.

The decrease in m with essentially the fourth root may be an artifact of our
proof. As the number of tasks increases the norm of the covariances becomes
dominant. Since we restricted ourselves to data in the unit ball, we will have


Ĉ (x)




1
� 1 and kCmk1 � 1, so the amplitude is essentially normalized. Let us

assume that the mixture of data-distributions is uniform on a k-dimensional unit
sphere in H. Then Cm has k eigenvalues, all equal to 1=k, so kCmkp=2 = k

2�p
p .

If we combine this with the FB;d regularization considered above we obtain the
bound

E
h
R̂m
n (FB;d)X

i
� 2Bp

n

 �
d

k

� p�2
p

+ d
p�2
p

r
3

m

!1=2
:

The limiting value as the number m of tasks increases depends only on the
fraction � = d=k, which might be viewed as the ratio of utilized information
to totally present information k. If � < 1 multi-task learning will always be
an improvement over single task learning for su¢ ciently large m (modulo the
important requirement that the tasks are su¢ ciently related to arrive at a small
empirical error despite the regularisation). In the limitm!1 the best exponent
is p =1 leading to the bound

lim sup
m!1

E
h
R̂m
n (FB;d) (X)

i
� 2Bp

n
�1=2:

For small values of m and large d smaller values of p will give a better bound.
If � � 1 constraining to FB;d will bring no improvement over FB;1. This is

understandable because constraining to at most d-dimensional subspaces has lit-
tle e¤ect when the data-distribution is already less than d-dimensional. Normally
we expect that there exist low-dimensional subspaces expressing the relevant in-
formation in a chaos of data, which is the same as assuming �� 1.

A precursor of this paper is [12], where a result like part (II) of Theorem 2
is given for the case p = 4. It does not extend to larger values of p however, nor
is it directly applicable to graph regularization.
The next section gives missing de�nitions and some important preliminary

result. Section 3 gives a proof of part (I) of Theorem 2 and applies it to graph
regularization. Section 4 is dedicated to the proof of part (II) of Theorem 2.
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2 De�nitions, Schatten-norms and Hoelders inequality

Throughout this paper we will use superscripts l; r 2 f1; :::;mg to index one of
m learning tasks and we �x a real, separable Hilbert space H with inner product
h:; :i and norm k:k, and assume the random variables X l

i to be as described in
the introduction. For a bounded operator T on H we generally use T � to denote
the adjoint and write jT j2 = T �T .
Let T be a compact operator from H to a Hilbert space H 0 and �i = �i (T )

its sequence of singular values in descending order, counting multiplicities. The
�i are just the necessarily nonnegative eigenvalues of (T

�T )
1=2

= jT j (see [14]
for background). For such operators T and p � 1 de�ne

kTkp =
 X

i

�pi

!1=p
and Ip =

n
T : kTkp <1

o
.

We also de�ne kTk1 = supi �i = �0 and I1 as the set of all compact operators
from H to another Hilbert space H 0. As the notation indicates, k:kp does indeed
de�ne a norm making Ip into a Banach space. For 1 � p1 � p2 � 1 we have
kTkp2 � kTkp1 . For T 2 I1 the trace tr (T ) is de�ned by

tr (T ) =
X
i

hTei; eii ;

where (ei) is an orthonormal basis of H. This series converges absolutely and its
limit is independent of the choice of basis. If A and B are in I2 then A�B is in
I1 and the inner product

hA;Bi2 = tr (A
�B)

makes I2 into a Hilbert space, the space of Hilbert-Schmidt operators. This
work will rely on Hoelder�s inequality for compact operators, a beautiful classical
theorem (see e.g. Reed-Simon [13]).

Theorem 3. Let 1 � p � 1 and q�1 + p�1 = 1. If A 2 Ip and B 2 Iq then
AB 2 I1 and jhA;Bi2j = jtr (A�B)j � kAkp kBkq.

Let V be a bounded operator V : H ! Rm. Let
�
el
�m
l=1

be the canonical
basis for Rm. By the Riesz theorem there is an m-tuples

�
v1; :::; vm

�
2 Hm of

vectors in H such that 

V x; el

�
=


vl; x

�
(1)

holds for all l. Conversely, if
�
v1; :::; vm

�
2 Hm then the formula

V x =
mX
l=1



vl; x

�
el

de�nes a bounded linear transformation V such that (1) holds. We will just
write V $

�
v1; :::; vm

�
for this bijection. Observe that if V;W : H ! Rm with
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V $
�
v1; :::; vm

�
and W $

�
w1; :::; wm

�
, then

tr (W �V ) =
mX
l=1



vl; wl

�
: (2)

De�nition 2. For a con�guration � =
�
�li
�(m;n)
(l;i)=1

2 f�1; 1gnm of the Rademacher

variables and x =
�
xli
�(m;n)
(l;i)=1

2 Hnm with


xli

 � 1 de�ne a linear transforma-

tion W (�;x) : H ! Rm by W (�;x)$
�
w1 (�;x) ; :::; wm (�;x)

�
and

wl (�;x) =
nX
i=1

�lix
l
i.

When there is no ambiguity we drop the explicit dependance on either � or
x or both. W is thus an operator-valued random variable and its components
wl =

Pn
i=1 �

l
ix
l
i are vector valued random variables.

In our context the beauty of Hoelder�s inequality is that it immediately splits
the Rademacher complexity into a regularizing factor, depending on the function
class F used for learning, and a data dependent factor:

Lemma 1. For conjugate exponents p; q � 1 with 1=p + 1=q = 1 and x =�
xli
�(m;n)
(l;i)=1

2 Hnm and a class F of bounded linear transformations V : H ! Rm,
we have

R̂m
n (F) (x) �

2p
n

�
sup
V 2F

kV kqp
m

�0@E�
h
kW (�;x)kp

i
p
mn

1A :
Proof. Using the trace formula (2) and Hoelder�s inequality (Theorem 3) we
obtain

R̂m
n (F) (x) = E�

"
sup
V 2F

2

mn

mX
l=1

nX
i=1

�li


xli; v

l
�#

= E�

"
sup
V 2F

2

mn

mX
l=1



wl; vl

�#

= E�

�
sup
V 2F

2

mn
tr (W �V )

�
� 2

mn
E�

�
sup
V 2F

kV kq kWkp
�
:

�

For every x 2 H we de�ne an operator Qx by Qxy = hy; xix for y 2 H. The
following facts are easily veri�ed:
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Lemma 2. Let x; y 2 H and p 2 [1;1]. Then
(i) Qx 2 Ip and kQxkp = kxk

2
:

(ii) hQx; Qyi2 = hx; yi
2
:

(iii) If V $
�
v1; :::; vm

�
: H ! Rm then jV j2 =

Pm
l=1Qvl .

Let X be a random variable with values in H, such that E [kXk] � 1.
The linear functional y 2 H 7! E [hX; yi] is bounded by E [kXk] and thus
de�nes (by the Riesz Lemma) a unique vector E [X] 2 H such that E [hX; yi] =
hE [X] ; yi ;8y 2 H, with kE [X]k � E [kXk].
If we also have E

h
kXk2

i
� 1 then we can apply the same construction to

the random variable QX with values in the Hilbert space I2: By Lemma 2 (i)
E [kQXk2] = E

h
kXk2

i
� 1, so there is a unique operator E [QX ] 2 I2 such

that E [hQX ; T i2] = hE [QX ] ; T i2 ;8T 2 I2.
De�nition 3. The operator E [QX ] is called the covariance operator of X.

We summarize some of its properties in the following lemma (see e.g. [12]).
Property (ii) is sometimes taken as the de�ning property of the covariance op-
erator.

Lemma 3. The covariance operator E [QX ] 2 I2 has the following properties.
(i) kE [QX ]k2 � E [kQXk2].
(ii) hE [QX ] y; zi = E [hy;Xi hz;Xi] ;8y; z 2 H:
(iii) tr (E [QX ]) = E

h
kXk2

i
:

If x 2 Hmn with x =
�
xli : l 2 f1; :::;mg ; i 2 f1; :::; ng

�
is a data-set, Ê be

the expectation corresponding to the empirical distribution 1= (mn)
Pm;n

l;i=1 �xli .

The corresponding empirical covariance Ĉ (x) is the operator

Ĉ (x) = Ê [QX ] =
1

mn

mX
l=1

nX
i=1

Qxli :

3 Graph Regularization

We give a proof of part (I) of Theorem 2 and sketch how it applies to graph
regularization as described in [8] and [9].

Proof (of Theorem 2, part (I)). Beginning as in the proof of Lemma 1 we obtain
from Hoelder�s inequality in the simplest (Schwarz-) case p = q = 2

R̂m
n (F) (x) = E�

�
sup
V 2F

2

mn
tr (W �V )

�
= E�

�
sup
V 2F

2

mn
tr
�
W �A�1=2A1=2V

��
� 2p

n
sup
V 2F

 

A1=2V 


2p

m

!
E�
�

W �A�1=2




2

�
p
mn

:
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To prove part (I) it therefore su¢ ces to show that E�
�

W �A�1=2




2

�
�
�
n tr

�
A�1

��1=2
.

Using Jensen�s inequality, independence and symmetry of the Rademacher vari-
ables, we obtain

E�

h


W �A�1=2




2

i2
� E

�


W �A�1=2



2
2

�
= E

�
tr
�
W �A�1W

��
=

mX
l=1

mX
r=1

A�1lr

nX
i=1

nX
j=1

E
�
�li�

r
j

� 

xli; x

r
j

�
=

mX
l=1

A�1ll

nX
i=1



xli

2
� n tr

�
A�1

�
;

as required.�

Suppose that we have some way to quantify the �relatedness� !lr of any
pair (l; r) of distinct learning tasks, where we require symmetry !lr = !rl and
nonnegativity !lr � 0. For simplicity we will assume connectivity in the sense
that for all pairs (l; r), there is a sequence of indices (li)

K
i=0 such that l = l0 and

r = lK and !lk�1lk > 0 for all 1 � k � K.
The idea of graph regularization ([8], [9]) is to use a regularizer J (V ) =

J
�
v1; :::; vm

�
, which forces the classi�ers of related tasks to be near each other,

penalizing the squared distance


vl � vr

2 proportional to !lr. Such a regularizer

is

J (V ) =
1

2m

X
l;r

!lr


vl � vr

2 + �

m

mX
l=1



vl

2
=
1

m

X
l;r

(L+ �I)lr


vl; vr

�
;

where L is the Laplacian of the graph with m vertices and edge-weights !, and
I is the identity in Rm. We have slightly departed from the form given in [9]
by adding the term in �. We will however see, that a large number m of tasks
allows � to be chosen small.
Fix B > 0. We will bound the Rademacher complexity of the function class

F =
�
V : J (V ) � B2

	
. Substitution of our bound in Theorem 1 will then lead

to generalisation guarantees for graph regularisation.
To bound R̂m

n (F) note that a transformation V $
�
v1; :::; vm

�
belongs to F

if and only ifX
l;r

(L+ �I)lr


vl; vr

�
� mB2 () tr (V � (L+ �I)V ) � mB2

() m�1=2



(L+ �I)1=2 V 




2
� B:
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Using Theorem 2 (I) with A = L+ �I therefore gives

R̂m
n (F) �

2Bp
n

vuut tr
�
(L+ �I)

�1
�

m

=
2Bp
n

vuut 1

m

mX
i=2

1

�i + �
+

1

m�
(3)

� 2Bp
n

r
1

�2
+

1

m�
; (4)

where �2; :::; �m are the nonzero eigenvalues of the Laplacian in (now) ascending
order (with �1 = 0 having multiplicity 1 - it is here that we used connectivity).
For a large number of tasks m we can choose � small, say � = O (1=

p
m), and

the contribution of the Laplacian becomes dominant. Which of the bounds (3) or
(4) is preferable depends on the nature of the Laplacian, which in turn depends
on the coupling constants !lr.
For a particularly simple example consider !lr = c=m for all distinct tasks l

and r, where c is some positive constant. The regularizer then becomes

J (V ) =
1

2m

X
l;r

c

m



vl � vr

2 + �

m

mX
l=1



vl

2
=
c

m

X
l






vl � 1

m

X
r

vr







2

+
�

m

mX
l=1



vl

2 ;
and can be recognized as the regularizer in section 3.1.1 in [9]. The corresponding
Laplacian is Llr = c (�lr � 1=m), and the nonzero eigenvalues are all equal to c.
Substitution in the bound (4) then gives

R̂m
n (F) �

2Bp
n

r
1

c
+

1

m�
;

exhibiting both the bene�t of assuming a large �relatedness�c of the tasks, and
the increasing irrelevance of the general regularization parameter � for a large
number m of tasks.

4 Bounding the expected norm of W (�; x)

Now we prove part (II) of Theorem 2. Hoelders inequality essentially reduces
the problem of the proof to the analysis of the expected norm of W =W (�;x) ;

W $
�
w1; :::; wm

�
. Our idea of proof is to instead study jW j2, which is easier to

deal with. We compute the expectation and bound the variance of this random
variable
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Lemma 4. We have the two identities
(i) E�

h
jW (�;x)j2

i
= mnĈ (x)

(ii) EXE�
h
jW (�;X)j2

i
= mnCm

Proof. For a �xed con�guration x and any y; z 2 H we have, by independence
and symmetry of the Rademacher variables,

hE� [W �W ] y; zi = E� [hWy;Wzi] =
mX
l=1

E�
�

wl; y

� 

wl; z

��
=

mX
l=1

nX
i=1

nX
j=1

E�
�
�li�

l
j

� 

xli; y

� 

xlj ; z

�
=

mX
l=1

nX
i=1



xli; y

� 

xli; z

�
=

*
mX
l=1

nX
i=1

Qxliy; z

+
= mn

D
Ĉ (x) y; z

E
:

The second equation follows from replacing x by X in the �rst one and applying
EX.�

Lemma 5. For �xed x 2 Hmn with


xli

 � 1 we have

E�

h


jW (�;x)j2 � E�
h
jW (�;x)j2

i



2

i
� n

p
2m:

Also
EXE�

h


jW (�;X)j2 � EXE�
h
jW (�;X)j2

i



2

i
� n

p
3m

Proof. We use the representation jW j2 = jW (�;x)j2 =
Pm

l=1Qwl as introduced
in section 2, Lemma 2, with

wl = wl (�;x) =
nX
i=1

�lix
l
i:

To prove the �rst inequality we keep x �xed. Let the �li be iid copies of �
l
i and

write Ŵ =W (�;x) and ŵl = wl (�;x). Then

E�

�


jW j2 � E� hjW j2i


2
2

�
= E�;�

�D
jW j2 ; jW j2

E
2
�
�
jW j2 ;

���Ŵ ���2�
2

�
=

mX
l=1

mX
r=1

E�;� [hQwl ; Qwr i2 � hQwl ; Qŵr i2]

=
mX
l=1

E�;� [hQwl ; Qwli2 � hQwl ; Qŵli2] ;
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because of the independence of wl and wr for l 6= r. The l-th term in the last
expression is equal to

E�;�

h

wl

4 � 
wl; ŵl�2i = X
i;j;i0;j0

E�;�
�
�li�

l
j�
l
i0�

l
j0 � �li�lj�li0�lj0

� 

xli; x

l
j

� 

xli0 ; x

l
j0
�
:

By independence and symmetry of the � variables the expectation on the right
will have the value one if i = j and i0 = j0 or if i = j0 and i0 = j. If i = i0 and
j = j0 a cancellation will occur, so the expectation will be zero. In all other cases
it vanishes because there will be some factor of the �lk occurring only once. We
conclude that

E�;�

h

wl

4 � 
wl; ŵl�2i =X
i;j

�

xli

2 

xlj

2 + 
xli; xlj�2� � 2n2:
Summing over l we get with Jensen�s inequality,

E�

h


jW j2 � E� hjW j2i



2

i
�
�
E�

�


jW j2 � E� hjW j2i


2
2

��1=2
�
�
2mn2

�1=2
;

which is the �rst inequality.
To prove the second inequality we also introduce iid copies X̂ l

i of X
l
i and

write W =W (�;X) and Ŵ =W
�
�; X̂

�
. Proceeding as before we obtain

E�;X

�


jW j2 � E�;X hjW j2i


2
2

�
=

mX
l=1

E�;�;X;X̂

h

wl

4 � 
wl; ŵl�2i :
Now we have

E�;�;X;X̂

h

wl

4 � 
wl; ŵl�2i � E�;X h

wl

4i
=

X
i;j;i0;j0

E�
�
�li�

l
j�
l
i0�

l
j0
�
EX

�

xli; x

l
j

� 

xli0 ; x

l
j0
��
:

Now E�
�
�li�

l
j�
l
i0�

l
j0

�
will be nonzero and equal to one if either i = j and i0 = j0

or i = i0 and j = j0 or i = j0 and j = i0, which gives a bound of 3n2 on the
above expectation. Summing over l we obtain

E�;X

h
kW �W � E [W �W ]k22

i
� 3mn2

and the conclusion follows from Jensen�s inequality.�
Proof (of Theorem 2, part (II)).We have from Lemma 4, the triangle inequality,
the nonincreasing nature of spectral norms k:kq and Lemma 5 for any q � 2

E�

�


jW j2



q

�
�mn




Ĉ (x)



q
= E�

�


jW j2



q
�



E� hjW j2i




q

�
� E�

�


jW j2 � E� hjW j2i



q

�
� E�

h


jW j2 � E� hjW j2i



2

i
� n

p
2m.
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Similarly we obtain EXE�

�


jW j2



q

�
� mn kCmkq � n

p
3m. It follows from

Jensen�s inequality that for p � 4

(mn)
�1=2

E�

h
kWkp

i
= (mn)

�1=2
E�

�


jW j2


1=2
p=2

�
� (mn)�1=2

�
E�

�


jW j2



p=2

��1=2
� (mn)�1=2

�
mn




Ĉ (x)



p=2
+ n

p
2m

�1=2
=

 


Ĉ (x)



p=2
+

r
2

m

!1=2
:

In the same way we obtain

(mn)
�1=2

EXE�

h
kWkp

i
�
 
kCmkp=2 +

r
3

m

!1=2
:

Substitution in Lemma 1 completes the proof. �

5 Conclusion

We showed that an application of Hoelder�s inequality to bound the Rademacher
complexity of linear transformation classes leads to generalization bounds for
various regularization schemes of multi-task learning. Two major defects of the
results presented are the following:

�The decrease in the r.h.s of the bound in part II of Theorem 2 withO
�
m�1=4�.

Is this a necessary feature or an artifact of a clumsy proof? In [12] there is a
similar bound with O

�
m�1=2�, but it requires that the transformations can

be factored V = ST where S : H ! Rm has the property


S�el

 � 1 for

the canonical basis
�
el
�
of Rm. Also the result in [12] is worse in the limit

m ! 1, diverging for constant � and d ! 1 (in context and notation of
section 1.3).

�Part II of Theorem 2 might well be valid for all p 2 [2;1], instead of just
p 2 f2g [ [4;1] (the case p = 2 follows trivially from part I). This would
follow if something like Lemma 5 was true also for the 1-norm instead of the
2-norm.
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