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Abstract

We prove existence and uniqueness of the minimizer for the average

geodesic distance to the points of a geodesically convex set on the sphere.

This implies a corresponding existence and uniqueness result for an opti-

mal algorithm for halfspace learning, when data and target functions are

drawn from the uniform distribution.

1 Introduction

Let Sn−1 be the unit sphere in R
n with normalized uniform measure σ and

geodesic metric ρ, and let K be a proper convex cone with nonempty interior
in R

n. We will show that the function ψ : Sn−1 → R defined by

ψK (w) =

∫

K∩Sn−1

ρ (w, y) dσ (y)

attains its global minimum at a unique point on Sn−1. While existence of the
minimum is straightforward, uniqueness seems surprisingly difficult to prove.

A similar problem has been considered in [2] and [1]. In these works the
intention is to define a centroid, so integration is replaced by finite summation
and ρ (w, y) replaced by ρ (w, y)

2
. Since the problem is rather obvious, it appears

likely that a proof of the above result exists somewhere in the literature and we
just haven’t been able to find it.

2 Optimal halfspace learning

Our motivation to consider this problem arises in learning theory. Specifically
we consider an experiment, where

1. A unit vector u is drawn at random from σ and kept concealed from the
learner.
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2. A sample x = (x1, ..., xm) ∈
(

Sn−1
)m

is generated in m independent
random trials of σ.

3. A label vector y = u (x) ∈ {−1, 1}m
is generated according to the rule yi =

sign (〈u, xi〉), where 〈., .〉 is the euclidean inner product and sign (t) = 1
if t > 0 and −1 if t < 0. The sign of 0 is irrelevant, because it corresponds
to events of probability zero.

4. The labeled sample (x,y) = (x, u (x)) is supplied to the learner.

5. The learner produces a hypothesis f (x,y) ∈ Sn−1 according to some
learning rule f :

(

Sn−1
)m

× {−1, 1}m → Sn−1.

6. An unlabeled test point x ∈ Sn−1 is drawn at random from σ and pre-
sented to the learner who produces the label y = sign (〈f (x,y) , x〉).

7. If sign (〈u, xi〉) = y the learner is rewarded one unit, otherwise a penalty
of one unit is incurred.

We now ask the following question: Which learning rule f will give the
highest average reward on a very large number of independent repetitions of
this experiment?

Evidently the optimal learning rule has to minimize the following functional:

Ω (f) = Eu∼σEx∼σm Pr
x∼σ

{sign (〈f (x, u (x)) , x〉) 6= sign (〈u, x〉)} .

Now a simple geometric argument shows that for any v, u ∈ Sn−1 we have

Pr
x∼σ

{sign (〈v, x〉) 6= sign (〈u, x〉)} = ρ (v, u) /π,

relating the misclassification probability to the geodesic distance. For a labeled
sample (x,y) ∈

(

Sn−1
)m

× {−1, 1}m we denote

C (x,y) =
{

u ∈ Sn−1 : u (x) = y
}

.

C (x,y) is thus the set of all hypotheses consistent with the labeled sample
(x,y). Observe that, given x and u there is exactly one y such that y = u (x),
that is u ∈ C (x,y). We also have C (x,y) = K (x,y) ∩ Sn−1 where K (x,y) is
the closed convex cone

K (x,y) = {v ∈ R
n : 〈u, yixi〉 ≥ 0, ∀ 1 ≤ i ≤ m} .

We therefore obtain

Ω (f) = π−1
Eu∼σEx∼σmρ (f (x, u (x)) , u)

= π−1
Ex∼σm

∑

y∈{−1,1}m

Eu∼σρ (f (x, u (x)) , u) 1C(x,y) (u)

= π−1
Ex∼σm

∑

y∈{−1,1}m

Eu∼σρ (f (x,y) , u) 1C(x,y) (u)

= π−1
Ex∼σm

∑

y∈{−1,1}m

ψK(x,y) (f (x,y)) .
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If K (x,y) has empty interior then the corresponding summand vanishes, so we
can assume that K (x,y) has nonempty interior. Clearly −yixi /∈ K (x,y) for
all example points, so K (x,y) is a proper cone. Our result therefore applies
and asserts the existence of a unique minimizer f∗ (x,y) of the function ψK(x,y).
The map f∗ : (x,y) 7→ f∗ (x,y) is then the unique optimal learning algorithm.

The map f∗ also has the symmetry property f∗ (V x,y) = V f∗ (x,y) for any
unitary V on R

n. This is so, because

ψK(V x,y) (w) = ψK(x,y)

(

V −1w
)

,

as is easily verified. We will also show, that the solution f∗ (x,y) must lie in
the cone

{

m
∑

i=1

αiyixi : αi ≥ 0

}

and that ψK(x,y) has no other local minima.

3 Proof of the main result

Notation 1 ρ (., .) is the geodesic distance and σ the Haar measure on Sn−1.
For A ⊆ R

n we denote A1 = {x ∈ A : ‖x‖ = 1} = A∩Sn−1. ’Cone’ will always
mean ’convex cone’. For A ⊆ R

n we denote

Â = {x : 〈x, v〉 ≥ 0, ∀v ∈ A} .

This is always a closed convex set. A proper cone K is one which is contained
in some closed halfspace. For a set A the indicator function of A will be denoted
by 1A

Lemma 2 Let K be a closed cone
(i) If w /∈ K then there is a unit vector z ∈ R

n such that 〈z, w〉 < 0 and
〈z, y〉 ≥ 0 for all y ∈ K.

(ii)
(

K̂
)ˆ

= K .

(iii) Suppose that K is proper and has nonempty interior, w ∈ Sn−1, w /∈

K̂∪
(

−K̂
)

and ǫ > 0. Then there exists z with ‖z‖ = 1 such that −ǫ < 〈z, w〉 < 0

and 〈z, y〉 > 0 for all y ∈ K̂\ {0}.

Proof. (i) Let B be an open ball containing w such that K ∩B = ∅. Define

O = {λx : x ∈ B, λ > 0} .

Then K and O are nonempty disjoint convex sets and O is open. By the Hahn-
Banach theorem ([4], Theorem 3.4) there is γ ∈ R and z ∈ R

n such that

〈z, x〉 < γ ≤ 〈z, y〉 , ∀x ∈ O, y ∈ K.
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Choosing y = 0 ∈ K gives γ ≤ 0, letting λ → 0 in 〈z, λw〉 < γ shows γ ≥ 0, so
that γ = 0. The normalization is trivial.

(ii) Trivially K ⊆
(

K̂
)ˆ

. On the other hand, if w /∈ K let z be the vector

from part (i). Then z ∈ K̂ but 〈w, z〉 < 0, so that w /∈
(

K̂
)ˆ

.

(iii) Since w /∈ K̂ there exists x1 ∈ K s.t. 〈w, x1〉 < 0. Since the interior of
K is nonempty, K is the closure of its interior (Theorem 6.3 in [3]), so we can

assume x1 ∈ int(K). Similarily, since w /∈
(

−K̂
)

we have −w /∈ K̂, so there is

x2 ∈ int(K) with 〈−w, x2〉 < 0, that is 〈w, x2〉 > 0. Since the interior of K is
convex it contains the segment [x1, x2], so by continuity of 〈w, ·〉 there is some
x0 ∈ int(K) with 〈w, x0〉 = 0. Since K is a proper cone 0 /∈ int(K) and we can
assume that ‖x0‖ = 1.

Let c > 0 be such that x′ ∈ K whenever ‖x0 − x′‖ ≤ c. We define

z = (1 − η)
1/2

x0 − η1/2w, where 0 < η < min

{

c2

1 + c2
, ǫ2

}

.

Since 〈w, x0〉 = 0 it is clear that z is a unit vector. Also 〈w, z〉 = −η1/2 > −ǫ,
and for any y ∈ K̂1 we have x0 − cy ∈ K, so 〈y, x0 − cy〉 ≥ 0 and

〈y, z〉 = (1 − η)
1/2

(〈y, x0 − cy〉 + c 〈y, y〉) − η1/2 〈y, w〉

≥ (1 − η)1/2 c− η1/2 > 0.

Theorem 3 Let K ⊂ R
n−1 be a closed proper cone with nonempty interior,

g : [0, π] → R continuous and the function ψ : Sn−1 → R defined by

ψ (w) =

∫

K1

g (ρ (w, y)) dσ (y) .

(i) ψ attains its global minimum on Sn−1.

(ii) If g is increasing then every local minimum of ψ must lie in K̂ ∪
(

−K̂
)

and every global minimum of ψ must lie in K ∩ K̂.
(iii) If g is increasing and convex in [0, π/2] then the global minimum of ψ

is unique and corresponds to the only local minimum outside −K̂.
(iv) If g is increasing, convex in [0, π/2] and concave in [π/2, π] then the

global minimum of ψ is unique and corresponds to its only local minimum on
Sn−1.

Proof. (i) is immediate since Sn−1 is compact and ψ is continuous.

(ii) Fix w ∈ Sn−1, w /∈ K̂ ∪
(

−K̂
)

. We will first show that there can be no

local minimum of ψ at w. Let ǫ > 0 be arbitrary and choose z as in the lemma
(iii). The functional z divides the sphere Sn−1 into two open hemispheres

L = {u : 〈z, u〉 < 0} and R = {u : 〈z, u〉 > 0} ,
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and an equator of σ-measure zero. Note that w ∈ L and K̂1 ⊆ R. We can write

c = min
y∈K̂1

〈y, z〉 > 0,

since K̂1 is compact and y 7→ 〈y, z〉 is continuous. With V we denote the
reflection operator which exchanges points of L and R

V x = −〈x, z〉 z + (x− 〈x, z〉 z) .

V is easily verified to an isometry and V 2 = I.
Suppose now that u ∈ R and V u ∈ K. We claim that u is in the interior of

K. Indeed, if u′ ∈ R
n satisfies ‖u− u′‖ < 2 〈u, z〉 c, then for all y ∈ K̂1 we have

〈u′, y〉 = 〈u, y〉 − 〈u− u′, y〉 ≥ 〈u, y〉 − 2 〈u, z〉 c

≥ 〈u, y〉 − 2 〈u, z〉 〈z, y〉 = 〈V u, y〉 ≥ 0,

so u′ ∈
(

K̂
)ˆ

= K, by part (ii) of the lemma. This establishes the claim and

shows that V (K) ∩R is contained in the interior of K. It follows that

∀u ∈ R, 1K (u) ≥ 1K (V u) . (1)

Also V (K)∩R is relatively closed in R while int(K)∩R is open in R. Since R
is connected they can only coincide if V (K) ∩ R = R. But this is impossible,
since then

L ∪R = V (V (K) ∩R) ∪ (V (K) ∩R) ⊆ V (V (K ∩ L)) ∪ int (K)

= (K ∩ L) ∪ int (K) ⊆ K,

and K is assumed to be a proper cone. So V (K) ∩ R is a proper subset of
int(K) ∩ R. The inequality (1) is therefore strict on the nonempty open set
(int (K) ∩R) \ (V (K) ∩R).

Using isometry and unipotence of V we now obtain

ψ (w) − ψ (V w) =

∫

R

(g (ρ (w, u)) − g (ρ (V w, u))) 1K (u)dσ (u) +

+

∫

L

(g (ρ (w, u)) − g (ρ (V w, u))) 1K (u) dσ (u)

=

∫

R

(g (ρ (w, u)) − g (ρ (V w, u))) (1K (u) − 1K (V u)) dσ (u)

> 0.

The inequality holds, because the first factor (g (ρ (w, u)) − g (ρ (V w, u))) in the
last integral is always positive for u ∈ R, since g is increasing and ρ is increasing
in the euclidean distance. The second is nonnegative and positive on a set of
positive measure. Since ‖w − V w‖ = 2ǫ and ǫ > 0 was arbitrary, we see that
every neighborhood of w contains a point where ψ has a smaller value than at
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w. We conclude that w cannot be a local minimum of ψ, which proves the first
assertion of (ii).

If w /∈ K choose z as in part (i) of the lemma and let W be the isom-
etry Wx = −〈x, z〉 z + (x− 〈x, z〉 z). The ∀u ∈ K we have g (ρ (w, u)) >
g (ρ (Ww,u)), so ψ (w) > ψ (Ww) and w cannot be a global minimizer of ψ. So

every global minimizer must be in K ∩
(

K̂ ∩
(

−K̂
))

. Since K1 ∩
(

−K̂1

)

is

obviously empty the second assertion of (ii) follows.
(iii) Now let w1, w2 ∈ K̂1 with w1 6= w2. Connect them with a geodesic in

K̂1 and let w∗ ∈ K̂1 be the midpoint of this geodesic, such that ρ (w1, w
∗) =

ρ (w∗, w2) = ρ (w1, w2) /2 ≤ π/2. We define a map U by

Ux = 〈x,w∗〉w∗ − (x− 〈x,w∗〉w∗) .

Geometrically U is reflection on the one-dimensional subspace generated by w∗.
Note that w2 = Uw1 and that ρ (u, Uu) = 2ρ (u,w∗) if ρ (u,w∗) ≤ π/2 and that
ρ (u, Uu) = 2π − 2ρ (u,w∗) if ρ (u,w∗) ≥ π/2.

Take any u ∈ K1. Since w∗ ∈ K̂1 we have ρ (u,w∗) ≤ 2π, whence ρ (u, Uu) =
2ρ (u,w∗). All the four points w1, w2, u and Uu have at most distance π/2 from
w∗ and lie therefore together with w∗ on a common hemisphere. By the triangle
inequality

2ρ (u,w∗) = ρ (u, Uu)

≤ ρ (u,w1) + ρ (w1, Uu) = ρ (u,w1) + ρ (Uw1, UUu)

= ρ (u,w1) + ρ (w2, u) .

If u does not lie on the geodesic through w1 and w2 and not at distance π/2 from
w∗ strict inequality holds, and since K1 has nonempty interior strict inequality
holds on an open subset of K1. If g is increasing and convex in [0, π/2] then
dividing by 2, applying g and integrating over K1 we get

ψ (w∗) < (1/2) (ψ (w1) + ψ (w2)) .

It follows that there can be at most one point in K̂1 where the gradient of ψ
vanishes, and this point, if it exists, must correspond to a local minimum. By
(ii) this is the unique global minimum and the only local minimum outside −K̂,
which establishes (iii).

(iv) If x1, x2 ∈ −K̂1 and x∗ ∈ −K̂1 is their midpoint, then for u ∈ K we
obtain, using ρ (xi, u) = π − ρ (−xi, u) and a reasoning analogous to the above,

ρ (u,w∗) ≥ (1/2) (ρ (u,w1) + ρ (u,w2)) ,

the inequality being again strict on a set of positive measure and preserved
under application of a function g which is increasing and concave in [π/2, π], so
that

ψ (w∗) > (1/2) (ψ (w1) + ψ (w2)) .

It again follows that there can be at most one point in −K̂1 where the gradient
of ψ vanishes, and this point must now correspond to a local maximum. We
conclude that ψ has a unique local minimum which lies in K̂1.
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Remark. An example of a function as in (iii) is g (t) = t2, in which case the
minimizer is the spherical mass centroid considered in [2] and [1]. Examples of
functions as in (iv) are of course the identity function, in which case we obtain
the result stated in the introduction. We could also set g (t) = 2 (1 − cos t), in
which case the function reads

ψ (w) =

∫

K1

‖w − y‖2
dσ (y) .

In this case uniqueness of the minimum can be established with much simpler
methods.
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